

High Performance Chemical Isotope Labeling LC-MS Metabolomics Analysis Report

Prepared by TMIC Li-Node

Project Name	Comprehensive SHARP Metabolomics of XXX Samples	
Project Number	TMICXXX	
Client	XXX	
Document Type	Metabolomic Profiling Analysis Report	
Document Name	Analysis Report of 4-Channel Analysis	
Document Number	XXX	

Sample Received	Analysis Started	Report
January 01, 2025	January 07, 2025	January 17, 2025

Table of Contents

1	Ov	erview	1
2	Ma	aterials and Methods	1
2.	.1	General Information	.1
2.	.2	Sample Preparation	.1
2.	.3	LC-MS Analysis Condition	.2
2.	.4	Data Processing	.2
2.	.5	Data Cleansing	.2
2.	.6	Metabolite Identification	.2
3	Re	sults	3
3.	.1	Data Quality Check	.3
3.	.2	Data Processing and Cleansing	.6
3.	.3	Metabolite Identification	.8
3.	.4	Multivariate Analysis	29
3.	.5	Univariate Analysis	35
3.	.6	Pathway Analysis	36
4	Co	nclusions	8
5	Ар	pendix A. Biological Functions of Common Metabolic Pathways	9

1 Overview

This document reports the results for "Metabolomics of …" (4-Channel Analysis). Data was collected using Dansyllabeling Kit or DmPA-labeling Kit. Analysis was performed using IsoMS Pro 1.4.0 (NovaMT Inc.) and NovaMT Metabolite Database v3.0.

2 Materials and Methods

2.1 General Information

Sample Type:	XXX
Sample Group:	A total of 34 samples with 12 in the "Group A" group, 11 in the "Group B"
	group, and 11 in the "Group C" group.
Replicates:	Single replicate
Analysis Method:	4-channel analysis
Number of Kits Used:	2 labelling kit(s) per channel

2.2 Sample Preparation

2.2.1 Sample Randomization

Samples were randomized before any procedures to eliminate potential technical variations from sample preparation and instrument drift. The randomized samples were used for the following preparations and analyses.

2.2.1 Metabolite Extraction

To extract metabolites from cells, 50 μ L of LC-MS grade methanol/water (1:1 v/v), were added to samples. Samples were sonicated for 10 minutes, then centrifuged for 10 minutes. Solvents were aliquoted and dried, then resuspended in LC-MS grade water.

2.2.2 Sample Normalization

The total concentrations of samples were determined by NovaMT Sample Normalization kit. According to the quantification results, different volumes of water were added to adjust samples to the same concentration of 1000 cells/ μ L.

2.2.3 Aliquoting and Generation of the Pooled Sample

Each individual sample was vortexed then centrifuged at 15,000 g for 1 min. Supernatant was taken and split into four aliquots for different labeling methods, backup and preparation of pooled sample. For the one aliquot for preparing of pooled sample, 15 μ L was taken from each individual sample, and then combined and mixed thoroughly to prepare the pooled sample, which was used as the reference.

2.2.4 Chemical Isotope Labeling

2.2.5 Mixing

The ${}^{12}C_2$ -labeled individual sample was mixed with ${}^{13}C_2$ -labeled reference sample in equal volume. The mixture was ready to be analyzed by LC-MS. Prior to LC-MS analysis of the entire sample set, quality control (QC) sample was prepared by equal volume mix of a ${}^{12}C$ -labeled and a ${}^{13}C$ -labeled pooled sample.

2.3 LC-MS Analysis Condition

The LC-MS analysis was strictly followed the SOP. QC samples were injected every 20 sample runs to monitor instrument performance.

Instrument:	Themo Scientific Vanquish Neo LC linked to Thermo Scientific Orbitrap	
	Exploris 240 Mass Spectrometer	
Column:	Thermo Scientific Hypersil Gold reversed phase C18 column (100 x 1 mm,	
	1.9 μm particle size)	
MPA: 0.1% (v/v) formic acid in water		
MPB:	0.1% (v/v) formic acid in 95% acetonitrile with 5% water	
Gradient:	t = 0 min, 1% B; t = 1 min, 20% B; t = 12 min, 99% B; t = 16 min, 1% B;	
	t=18 min, 1% B	
Flow Rate:	100 µL/min	
Column Oven Temperature: 40 °C		
Mass Range:	m/z 220-1000	
Acquisition Rate:	1 Hz	

2.4 Data Processing

A total of 148 LC-MS data from 4-channel analysis (37 LC-MS data, including 3 QC, in each channel) were first exported to .csv file with ProteoWizard MS convert 3.0 software. The exported data were uploaded to IsoMS Pro 1.4.0. After Data Quality Check, Data Processing was performed. Parameters used for data processing are below.

Minimum m/z:	220
Maximum m/z:	1000
Saturation Intensity:	100000000
Retention Time Tolerance	9 seconds
Mass Tolerance:	10 ppm

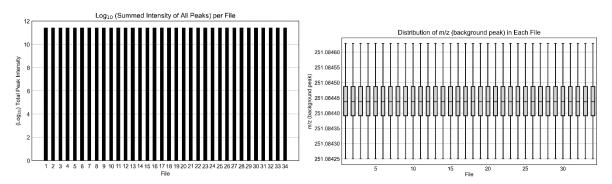
2.5 Data Cleansing

Four groups were assigned to 37 LC-MS data in each channel: 12 data files labeled as 'Group A' group, 11 data files labeled as 'Group B' group, 11 data files labeled as 'Group C' group and 3 data files labeled as 'QC' group. Peak pairs without data present in at least 80.0% of samples in any group were filtered out (see section 3.2). Data were normalized by Ratio of Total Useful Signal.

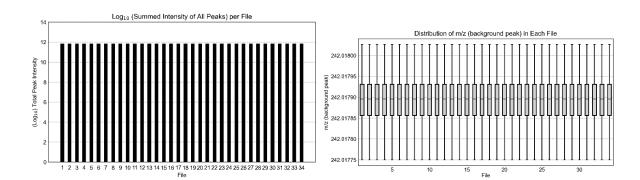
2.6 Metabolite Identification

The parameters used for metabolite identification are below.

Retention Time Tolerance for CIL Library ID	10 seconds
Retention Time Tolerance for LI Library ID	75 seconds
Mass Tolerance for CIL Library ID	10 ppm
Mass Tolerance for LI Library ID	10 ppm
Mass Tolerance for Mass-Based Database ID	10 ppm

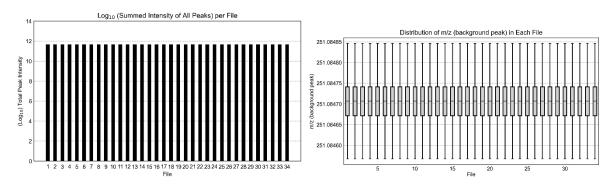


3 Results

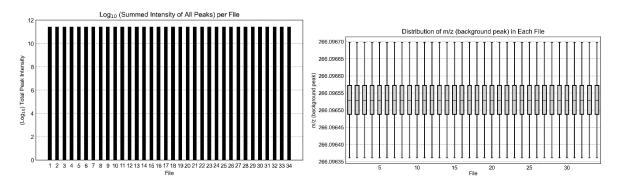

3.1 Data Quality Check

3.1.1 Mass Accuracy Check

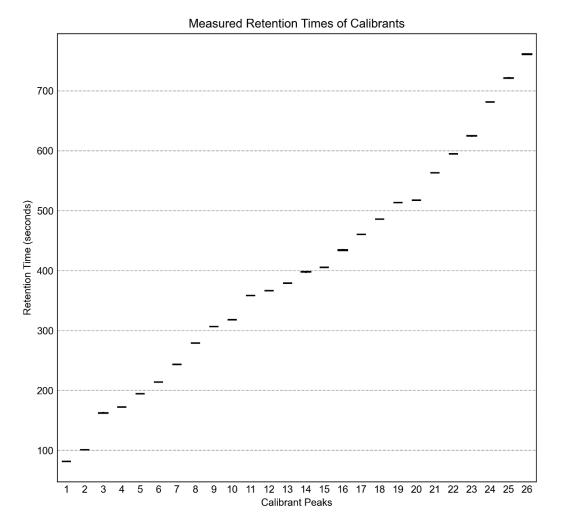
m/z 251.0849 was selected as background peak to check the mass accuracy for 34 samples in amine/phenol channel analysis. The summed intensity of all peaks was consistent during all runs. The mass of the background peak was consistent during all runs and all are within the expected range, showing good stability and mass accuracy for data acquisition.



m/z 242.0175 was selected as background peak to check the mass accuracy for 34 samples in carboxyl channel analysis. The summed intensity of all peaks was consistent during all runs. The mass of the background peak was consistent during all runs and all are within the expected range, showing good stability and mass accuracy for data acquisition.



m/z 251.0849 was selected as background peak to check the mass accuracy for 34 samples in hydroxyl channel analysis. The summed intensity of all peaks was consistent during all runs. The mass of the background peak was consistent during all runs and all are within the expected range, showing good stability and mass accuracy for data acquisition.


m/z 266.0958 was selected as background peak to check the mass accuracy for 34 samples in carbonyl channel analysis. The summed intensity of all peaks was consistent during all runs. The mass of the background peak was consistent during all runs and all are within the expected range, showing good stability and mass accuracy for data acquisition.

3.1.2 Retention Time Check

Four calibration data were used to check the retention time in each channel. All calibrant peaks were well aligned. The retention times of calibrants were consistent for all calibration data, showing good RT stability for data acquisition.

3.2 Data Processing and Cleansing

A total of 37 LC-MS data were processed for each channel. 4-channel LC-MS data of one sample were combined after data processing. Less commonly detected peak pairs were filtered out to ensure data quality. After filtering, 5707 \pm 30 peak pairs per sample were retained (from Supplemental Table 1). The table below (Table 1) shows the peak pair numbers detected in each sample. One supplemental table showing the list of peak pairs was generated with this report (Supplemental Table 1), which is the final metabolite-intensity table from the CIL LC-MS measurement of the samples.

In the Supplemental Table 1, peak pairs without data present in at least 80.0% of samples in any group were filtered out. Applying this 80%-rule ensures that only the commonly detectable peak pairs are retained for further analysis, without the use of excessive missing-value imputation. This 80% rule states that, if all the analyzed samples belong to one group, the retained peak pairs are those detectable in \geq 80% of the samples. If the analyzed samples belong to two or more groups, the retained peak pairs are those detectable in \geq 80% of the samples in any one of the groups. For example, in a study comparing group A (100 samples) and group B (100 samples), a peak pair will be retained if it is detectable in \geq 80% of the samples. However, if a peak pair is detectable in <80% of the group A samples and <80% of the group B samples. However, if a peak pair is detectable in <80% of the group A samples and <80% of the group B samples, this peak pair will be filtered out, as this peak pair is considered to be less commonly detected.

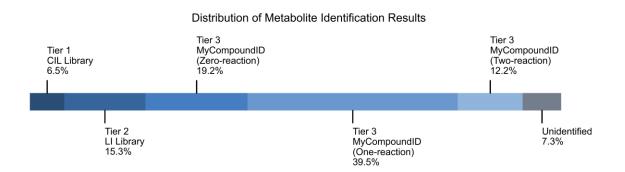
After filtering, all data were normalized by the ratio of total useful signals. The missing values of peak pairs in some samples due to low signal intensity (i.e., below the detection limit) was replaced with a rationally determined ratio by a unique zero-imputation program. This table can be used for statistical analysis without the need of applying any missing value imputation method given in a statistical tool.

Sample Name	Group	Number of Peak Pairs
sample 1	А	5693
sample 2	А	5709
sample 3	А	5700
sample 4	А	5697
sample 5	А	5713
sample 6	А	5719
sample 7	А	5686
sample 8	А	5658
sample 9	А	5723
sample 10	А	5693
sample 11	А	5709
sample 12	А	5686
sample 13	В	5757
sample 14	В	5692
sample 15	В	5708
sample 16	В	5701
sample 17	В	5698
sample 18	В	5712
sample 19	В	5720
sample 20	В	5687
sample 21	В	5659
sample 22	В	5724
sample 23	В	5690
sample 24	С	5718
sample 25	С	5680
sample 26	С	5763

Table 1. Number of Metabolites Detected in Each Sample

Sample Name	Group	Number of Peak Pairs
sample 27	С	5690
sample 28	С	5712
sample 29	С	5705
sample 30	С	5692
sample 31	С	5710
sample 32	С	5722
sample 33	С	5682
sample 34	С	5662
QC 1	QC	5721
QC 2	QC	5695
QC 3	QC	5708

3.3 Metabolite Identification


Three-tier ID approach was used to perform metabolite identification.

In tier 1, peak pairs were searched against a labeled metabolite library (CIL Library) based on accurate mass and retention time. The CIL Library contains more than 1,500 experimental entries. 378 peak pairs were positively identified in tier 1.

In tier 2, linked identity library (LI Library) was used for identification of the remaining peak pairs. LI Library includes over 9,000 pathway-related metabolites, providing high-confidence putative identification results based on accurate mass and predicted retention time matches. 893 peak pairs were putatively identified in tier 2.

In tier 3, the remaining peak pairs were searched, based on accurate mass match, against the MyCompoundID (MCID) library composed of 8,021 known human endogenous metabolites (zero-reaction library), their predicted metabolic products from one metabolic reaction (375,809 compounds) (one-reaction library) and two metabolic reactions (10,583,901 compounds) (two-reaction library). 1124, 2311 and 715 peak pairs were matched in the zero-, one- and two-reaction libraries, respectively.

Thus, out of 5845 unique peak pairs detected, 5421 (92.7%) pairs could be positively identified or putatively matched. Among them, 490 peak pairs were identified as high-confidence results (tier 1 and tier 2), which can be used for other analysis (e.g., pathway analysis).

The identification results for each peak pair are shown in Supplemental Table 1. Metabolites that were identified in tier 1 and tier 2 are listed below.

Table 2. 378 Metabolites that were positively identified in tier 1 (CIL Library)

NovaMT Library No.	External Identifier	Compound
AN02027002	<u>C08362</u>	(9Z)-Hexadecenoic Acid
BM00647000	C01983, C01984	(S)-Mandelic acid
BM00132006		2,3-Butanediol
BM00670003	<u>C00196</u>	2,3-Dihydroxybenzoic acid
BM00761001	<u>C02625</u>	2,4-Dichlorophenol
AN00670004	<u>C00628</u>	2,5-Dihydroxybenzoic acid
AN00189000	<u>C02356</u>	2-Aminobutyric acid/2-Aminoisobutyric acid
AN00726001		2-Aminooctanoic acid
AN00219002	<u>C01987</u>	2-Aminophenol
AN00197004	<u>C05984</u>	2-Hydroxybutyric acid
AN00594002	<u>C02630</u>	2-Hydroxyglutaric Acid
AN00647005	<u>C05852</u>	2-Hydroxyphenylacetic acid
AN00177004	<u>C00109</u>	2-Ketobutyric acid
AN00396002	<u>C00902</u>	2-Ketohexanoic acid
AN01210001		2-Methylhippuric acid
AN00638001		2-Phenylglycine
BM00626003		2-Phenylpropionic acid
AN01076000	<u>C05580</u>	3,4-Dihydroxymandelic acid
AN00856002	<u>C01161</u>	3,4-Dihydroxyphenylacetic acid
AN00670001		3,5-Dihydroxybenzoic acid
BM00823019	<u>C11457</u>	3-(3-Hydroxyphenyl)propanoic acid
AN01052008	<u>C03672</u>	3-(4-Hydroxyphenyl)lactic acid
AN00189001	<u>C05145</u>	3-Aminoisobutyric acid
BM00216000	<u>C01467</u>	3-Cresol
AN00167001		3-Hexanone
BM00311000	<u>C03067</u>	3-Hydroxybenzaldehyde
AN00477007	<u>C00587</u>	3-Hydroxybenzoic Acid
BM00326002	<u>C03351</u>	3-Hydroxybenzyl alcohol
AN00197001	C 0 (001	3-Hydroxybutanoic acid
AN00197000	<u>C06001</u>	3-Hydroxyisobutyric Acid
AN00283004	<u>C20827</u>	3-Hydroxyisovaleric Acid
AN00769001	<u>C03761</u>	3-Hydroxymethylglutaric acid
AN00647003	<u>C05593</u>	3-Hydroxyphenylacetic Acid
AN00130007	<u>C01013</u>	3-Hydroxypropanoic acid
AN01266002	<u>C05584</u>	3-Methoxy-4-hydroxymandelic acid
AN00396000	<u>C03465</u>	3-Methyl-2-oxovaleric acid
AN00109007 BM00647012	<u>C07329</u> C14088	3-Methylbutanal
BM00647013	<u>C02642</u>	3-Methylsalicylic acid 3-Ureidopropionic Acid
AN00419002	<u>C02042</u>	
AN03968005 AN03980014		3-keto-7alpha,12alpha-Dihydroxy-5alpha-cholanic acid 3beta-Cholic acid
AN005980014 AN00793000	C00811	4-Coumaric acid
BM00216003	C01468	4-Cresol/3-Cresol
	C13637	4-Ethylphenol
AN00269012 BM00311001	<u>C13637</u> C00633	4-Euryphenol 4-Hydroxybenzaldehyde/3-Hydroxybenzaldehyde
AN00477004	<u>C00035</u> C00156	4-Hydroxybenzaidenyde 4-Hydroxybenzoic acid
AN00197005	<u>C00989</u>	4-Hydroxybutanoic acid
BM01229007	<u>C00989</u>	4-Hydroxybippuric acid
AN00647002	C00642	4-Hydroxyphenylacetic acid
AN00396012	C00233	4-Methyl-2-oxopentanoic acid
BM00487001	C00233 C00870	4-Nitrophenol
AN00406002	C00430	5-Aminolevulinic acid
AN00400002 AN00277004	<u>C00430</u>	5-Aminopentanoic acid
AN01274001	<u>C00451</u>	5-Dodecenoic acid
AN00774001	C16741	5-Hydroxylysine
AN02059000	<u>C10/41</u>	5-Methylcytidine
AN02035000 AN03836002		5beta-Cholanic acid-12alpha-ol-3-one
BM00410006	C02378	6-Aminohexanoic acid
AN00410000	<u>C01020</u>	6-Hydroxynicotinic acid
AN00487003 AN00743002	<u>C01020</u>	
	C04643	7-Hydroxyoctanoic acid
AN03968004	<u>C04043</u>	7-Ketodeoxycholic Acid 7-Ketolithocholic acid
AN03836005		
AN03836001	C00084	7alpha-Hydroxy-3-oxo-5b-cholanoic acid
AN00014000 AN00177002		Acetaldehyde Acetoacetic Acid
AN00177002	<u>C00164</u> C00207	
AN00026002	<u>C00207</u>	Acetone - isomer 1/Propanal

NovaMT Library No.	External Identifier	Compound
AN00060002	<u>C00511</u>	Acrylic Acid
AN00452000	<u>C00147</u>	Adenine
BM00573004	C06104	Adipic Acid
AN00124000	C00041	Alanine
AN00738000	<u></u>	Alanyl-Alanine
AN01346002		Alanyl-Aspartic Acid
		• •
AN01544002		Alanyl-Glutamic acid
AN01530001		Alanyl-Glutamine
AN00574007		Alanyl-Glycine
AN01660001		Alanyl-Histidine
AN01324000		Alanyl-Isoleucine
AN01534000		Alanyl-Lysine
AN01782000		Alanyl-Phenylalanine
AN01133002		Alanyl-Valine
AN01608003	C00542	Allocystathionine
AN00754003	C00956	Aminoadipic acid
		-
AN00468006	<u>C00108</u>	Anthranilic acid
AN00945000	<u>C00062</u>	Arginine
AN00958000		Argininic acid
AN03117000		Arginyl-Arginine
AN01721000		Arginyl-Glycine
AN02122000		Arginyl-Serine
AN00419000	C00152	Asparagine
	<u>C00152</u>	
AN01902001		Asparaginyl-Asparagine
AN01922000		Asparaginyl-Aspartic acid
AN01146000		Asparaginyl-Glycine
AN02236000		Asparaginyl-Histidine
AN01563000		Asparaginyl-Serine
AN01742000		Asparaginyl-Threonine
AN00428000	C00049	Aspartic acid
AN01922001	<u></u>	Aspartyl-Asparagine
AN01933001		Aspartyl-Aspartic acid
AN01163001		Aspartyl-Glycine
AN02254000		Aspartyl-Histidine
AN01906003		Aspartyl-Isoleucine
AN02121002		Aspartyl-Lysine
AN01708000		Aspartyl-Proline
AN01757004		Aspartyl-Threonine
EF02406002		Aspartyphenylalanine
	C09261	Azelaic acid
AN01132000	<u>C08261</u>	
BM00208000	<u>C00261</u>	Benzaldehyde
AN00124003	<u>C00099</u>	Beta-Alanine
AN00410004	<u>C02486</u>	Beta-Leucine
AN01790000	C06313	Biopterin
AN00061006	C01412	Butanal
AN03850013	C02528	Chenodeoxycholic Acid
AN00594011		•
	<u>C02614, C02612</u> C00158	Citramalic acid
AN01194001	<u>C00158</u>	Citric acid/Isocitric acid
AN00958001	<u>C00327</u>	Citrulline
AN03543000	<u>C00735</u>	Cortisol
BP00108001	<u>C01771</u>	Crotonic Acid
AN02362001		Cysteinyl-Arginine
AN01965001		Cysteinyl-Glutamic acid
AN02070000		Cysteinyl-Histidine
AN01405000		5 5
		Cysteinyl-Serine
AN02456000		Cysteinyl-Tyrosine
AN01818000	<u>C00491</u>	Cystine
AN01857000	<u>C00475</u>	Cytidine
AN00233000	<u>C00380</u>	Cytosine
AN01024016	C01487	D-Allose
AN02087000	C00352	D-Glucosamine 6-phosphate
	C00031	
AN01024001		D-Glucose
AN00207000	<u>C00258</u>	D-Glyceric acid
AN00315001	<u>C16884</u>	D-Threitol
AN00704003	<u>C12307</u>	Decanal/2-Decanone
AN00920000	<u>C01571</u>	Decanoic acid
AN01672000	C00881	Deoxycytidine
AN02208001	C00330	Deoxyguanosine
AINU2200001	00000	Deoxyguanosine

NovaMT Library No.	External Identifier	Compound
BM00823005	<u>C01744</u>	Desaminotyrosine
AN00108006	<u>C00741</u>	Diacetyl
AN00204000	C06772	Diethanolamine
AN01713000	C02678	Dodecanedioic acid
AN01300003	C02679	Dodecanoic acid
AN00037000	C00189	Ethanolamine
AN00513001	<u>C00346</u>	Ethanolamine phosphate
AN00418009		Ethylmalonic acid
BP01216007	<u>C01494</u>	Ferulic acid
AN00796000	<u>C01019</u>	Fucose
AN00265000	C00122	Fumaric Acid
AN01024000	C00984	Galactose
BM00887000	C01424	Gallic acid
AN03980000	C17649	Gamma-Muricholic acid
AN00583000	<u>C00302</u>	Glutamic Acid
AN00574000	<u>C00064</u>	Glutamine
AN02742002		Glutaminyl-Arginine
AN02118003		Glutaminyl-Aspartic Acid
AN02336002		Glutaminyl-Glutamic acid
AN02092001		Glutaminyl-Leucine
AN01742001		Glutaminyl-Serine/Seryl-Glutamine
AN01544000		Glutamyl-Alanine
AN02758001		Glutamyl-Arginine
AN02118004		Glutamyl-Asparagine
AN02135002		Glutamyl-Aspartic acid
AN02350001		Glutamyl-Glutamic acid
AN02336003		Glutamyl-Glutamine
		Glutamyl-Glycine
AN01346004		• •
AN02110005		Glutamyl-Isoleucine
AN02110000		Glutamyl-Leucine
AN02376000		Glutamyl-Methionine
AN02608004		Glutamyl-Phenylalanine
AN03154000		Glutamyl-Tryptophan
AN02849001		Glutamyl-Tyrosine
	C00480	5 5
AN00418002	<u>C00489</u>	Glutaric Acid
AN01133007		Gly-Norleucine
AN00943007		Gly-Norvaline
AN00136000	<u>C00116</u>	Glycerol
AN00076000	C00037	Glycine
AN00080000	C00160	Glycolic Acid
AN00574005		Glycyl-Alanine
		Glycyl-Arginine
AN01721001		
AN01146001		Glycyl-Asparagine
AN01163002		Glycyl-Aspartic acid
AN01346005		Glycyl-Glutamic acid
AN01460000		Glycyl-Histidine
AN01133001	<u>C02155</u>	Glycyl-Leucine
AN01338000	002100	Glycyl-Lysine
AN01612000		Glycyl-Phenylalanine
AN00914000		Glycyl-Proline
AN00972001		Glycyl-Threonine
AN00419004	<u>C02037</u>	Glycyl-glycine
BM00326004	<u>C01502</u>	Guaiacol
AN00274000	C00581	Guanidinoacetic acid
AN01006000	C01586	Hippuric Acid
		11
AN00235000	<u>C00388</u>	Histamine
AN00684000		Histidine
AN01660002		Histidinyl-Alanine
AN02070001		Histidinyl-Cysteine
AN02459001		Histidinyl-Glutamic acid
AN01135000	C01924	Homoarginine
	C02427	Homocitrulline
AN01150000		
AN01061000	<u>C16511</u>	Homocysteic acid
AN00856000	<u>C00544</u>	Homogentisic acid
AN00291001	<u>C00263</u>	Homoserine
AN01052009	C05582	Homovanillic acid
AN00626000	C05629	Hydrocinnamic acid/3-Methylphenylacetic acid
AN00227003	C00530	Hydroquinone
	000330	nvulodulliolle

NovaMT Library No.	External Identifier	Compound
AN00406000	<u>C01157</u>	Hydroxyproline
AN00218000	C00519	Hypotaurine
AN00459000	C00262	Hypoxanthine
AN00345002	C02835	Imidazole-4-acetic acid
AN00956003	C00954	Indole-3-acetic acid
BM00559000	C08493	Indole-3-carboxaldehyde
BM01147000 BM01112000	<u>C22236</u>	Indole-3-propionic acid
BM01113000	000107	Indoleacrylic acid
AN00410002	<u>C00407</u>	Isoleucine
AN01324002		Isoleucyl-Alanine
AN01906006		Isoleucyl-Aspartic acid
AN01714000		Isoleucyl-Valine
AN00856010		Isovanillic acid
BM00392004	C00490	Itaconic acid
AN01408003	C01718	Kynurenine
AN00284000	C03283	L-2,4-Diaminobutanoic acid
AN01608000	C02291	L-Cystathionine /Allocystathionine
		• •
AN00277001	<u>C01799</u> C00247	L-Norvaline
AN01024019	<u>C00247</u>	L-Sorbose
BM01168000	<u>C00666</u>	LL-2,6-Diaminoheptanedioic acid
AN00130001	<u>C00186</u>	Lactic Acid
AN03286003	<u>C00243</u>	Lactose
AN00410000	<u>C00123</u>	Leucine
AN01906007		Leucyl-Aspartic acid
AN02095001		Leucyl-Lysine
AN02941001		Leucyl-Tryptophan
AN01714001		Leucyl-Valine
AN01714001 AN00769003		Levoglucosan
		6
AN00266005	001505	Levulinic acid
AN02413000	<u>C01595</u>	Linoleic acid
AN00578000	<u>C00047</u>	Lysine
AN01534001		Lysyl-Alanine
AN02121003		Lysyl-Aspartic acid
AN02339002		Lysyl-Glutamic acid
AN02095003		Lysyl-Leucine /Leucyl-Lysine
AN02593000		Lysyl-Methionine sulfoxide
AN01861000		Lysyl-Proline
AN01801000 AN02840000		
		Lysyl-Tyrosine
AN01892000 AN00265001	001294	Lysyl-Valine Malaia agid
AN00265001	<u>C01384</u>	Maleic acid
AN00435000	<u>C00711</u>	Malic Acid
AN00193001	<u>C00383</u>	Malonic Acid
AN00392001	<u>C01732</u>	Mesaconic Acid
AN00608000	<u>C00073</u>	Methionine
AN00810000	C02989	Methionine Sulfoxide
AN01586003		Methionyl-Alanine
AN02142003		Methionyl-Leucine
AN00102001		Methyl propenyl ketone
	C00546	Methylglyoxal
AN00060000		
AN00066000	<u>C02294</u>	Methylguanidine
AN00281003	<u>C02170</u>	Methylmalonic acid
AN00418007	<u>C08645</u>	Methylsuccinic acid
BM03850008	<u>C15515</u>	Murideoxycholic acid
AN01024005	C00137	Myoinositol
TA00952000	C01042	N-Acetyl-Aspartic acid
AN01597000	<u>C01132</u>	N-Acetyl-D-galactosamine
AN01597004	C00140	N-Acetyl-D-glucosamine
	<u>C00645</u>	N-Acetyl-D-gidcosamine
AN01597003	<u>C00045</u>	
AN00583008		N-Acetyl-DL-serine
AN00273000		N-Acetyl-Glycine
TA00406009		N-Acetyl-alanine
AN02835000	<u>C00270</u>	N-Acetylneuraminic acid
AN01729001		N-Formyltryptophan
AN00583007		N-Methyl-D-aspartic acid
AN00124004	C00213	N-Methyl-Glycine
		5 5
TA00943000	<u>C00437</u>	N-acetyl-Ornithine
AN01133000	<u>C02727</u>	N6-Acetyl-Lysine
AN02004003	C05926	Neopterin

NovaMT Library No.	External Identifier	Compound
AN00410003	<u>C01933</u>	Norleucine
AN01069002	<u>C05589</u>	Normetanephrine
AN03717001		Norursodeoxycholic Acid
AN00583002	C00979	O-Acetyl-L-serine
AN02466002	C01530	Octadecanoic acid
AN00376001	C01545	Octanal
AN02437000	<u>C00712</u>	Oleic Acid/Vaccenic Acid
BM03980010	<u>C17727</u>	Omega-Muricholic acid
AN00423000	<u>C00077</u>	Ornithine
BM00826012	<u>C11924</u>	Perillic acid
AN00307000	<u>C05332</u>	Phenethylamine
AN00145000	<u>C00146</u>	Phenol
AN00299005	C00601	Phenylacetaldehyde
AN00460002	C07086	Phenylacetic Acid
AN01210009	C05598	Phenylacetylglycine
AN00814000	C00079	Phenylalanine
	200077	
AN02385000		Phenylalanyl-Leucine
AN02141000		Phenylalanyl-Proline
AN01996001		Phenylalanyl-Serine
AN00823016	<u>C05607</u>	Phenyllactic acid
BM00344002	<u>C02183</u>	Phloroglucinol
AN00318000	C10164	Picolinic Acid
AN00736000	C02656	Pimelic acid /3-Methyladipic Acid
AN00385000	C00408	Pipecolic acid
AN00259000	C00148	Proline
	00148	
AN01106001		Prolyl-Alanine
AN02275001		Prolyl-Arginine/Arginyl-Proline
AN01708001		Prolyl-Aspartic acid
AN01874002		Prolyl-Glutamic acid
AN00914001		Prolyl-Glycine
AN01998001		Prolyl-Histidine
AN01688003		Prolyl-Leucine
AN01861001		Prolyl-Lysine
AN01904001		Prolyl-Methionine
		2
AN01516001		Prolyl-Threonine
AN02725000		Prolyl-Tryptophan
AN02380001		Prolyl-Tyrosine
AN01489000		Prolyl-Valine
AN00026003	<u>C00479</u>	Propanal
AN00842000	C00250	Pyridoxal
BM00344003	C01108	Pyrogallol
AN00380000	C01879	Pyroglutamic acid
AN00117000	C00022	Pyruvic acid
		5
AN02714000	<u>C00777</u>	Retinoic acid
AN02071002		Ribothymidine
AN00477006	<u>C00805</u>	Salicylic acid
BM01229005	<u>C07588</u>	Salicyluric acid
AN01323000	<u>C08277</u>	Sebacic Acid
AN01790003	<u>C00835</u>	Sepiapterin
AN00202000	C00065	Serine
AN00975002	C00780	Serotonin
AN01583002	200700	Servel-Aspartic acid
AN01405001		Seryl-Cysteine
AN01757006		Seryl-Glutamic acid
AN00770001		Seryl-Glycine
AN01852001		Seryl-Histidine
AN01744001		Seryl-Lysine
AN01779001		Seryl-Methionine
AN00565000	C00315	Spermidine
AN005050000 AN02696001	C00319	Sphingosine
AN00281002	<u>C00042</u>	Succinic Acid
AN00177003	<u>C00232</u>	Succinic semialdehyde
BM01266000	<u>C10833</u>	Syringic acid
AN00329000	<u>C00245</u>	Taurine
AN01690004	C06424	Tetradecanoic acid
AN00291000	C00188	Threonine
AN01608002	<u>C00100</u>	
AN01608002 AN01936001		Threeninyl-Cysteine
		Threoninyl-Glutamic acid

NovaMT Library No.	External Identifier	Compound
AN01735004		Threoninyl-Leucine
AN01927001		Threoninyl-Lysine
AN01516002		Threoninyl-Proline
AN00345001	<u>C00178</u>	Thymine
AN02296000		Thyroine
AN01687000	<u>C16308</u>	Traumatic Acid
BP01491000	<u>C17076</u>	Tridecylic Acid
AN01348000	<u>C00078</u>	Tryptophan
AN03834000		Tryptophyl-Tryptophan
AN01037004	<u>C00082</u>	Tyrosine
AN01801001		Tyrosyl-Glycine
AN03081001		Tyrosyl-Phenylalanine
AN01109004	<u>C17715</u>	Undecanoic acid
AN00240000	<u>C00106</u>	Uracil
AN00855000	<u>C00366</u>	Uric acid
AN01868000	<u>C00299</u>	Uridine
BM03850002	<u>C07880</u>	Ursodiol
AN00277003	<u>C00183</u>	Valine
AN01133006		Valyl-Alanine
AN01890005		Valyl-Glutamine
AN00943003		Valyl-Glycine
AN02180002		Valyl-Phenylalanine
AN01349002		Valyl-Serine
AN01548005		Valyl-Threonine
AN01522000		Valyl-Valine
BM00856008	<u>C06672</u>	Vanillic acid
AN00646000	<u>C00385</u>	Xanthine
AN00266001	<u>C00141</u>	a-Ketoisovaleric acid
AN00971000	<u>C02504</u>	alpha-Isopropylmalic acid
AN02387003	<u>C06427</u>	alpha-Linolenic acid
AN01024021	<u>C02336</u>	beta-D-Fructose
AN00406012	<u>C03440</u>	cis-4-Hydroxy-D-proline
AN00934000	<u>C00417</u>	cis-Aconitic acid
AN02350000	<u>C05282</u>	gamma-Glutamylglutamic acid
BM00216002	<u>C01542</u>	o-Cresol/4-Cresol
AN01037003		o-Tyrosine
AN00662000	<u>C04227</u>	p-Octopamine
AN01464000		prolyl-proline
BM00793002	<u>C12621</u>	trans-3-Hydroxycinnamic acid
BM00934003	<u>C02341</u>	trans-Aconitic acid

Table 3. 893 Metabolites that were high-confidence putative matched in tier 2 (LI Library)

NovaMT Library No.	External Identifier	Compound
AN01640006	<u>C16318</u>	(+)-7-Isomethyljasmonic acid
BM01755001	C16600	(-)-threo-Iso(homo)3-citric acid
AN02071000	C05131	(1-Ribosylimidazole)-4-acetic acid
BM00866018	C19083	(1R,4S)-1-Hydroxy-2-oxolimonene
AN00513000	C05678	(2-Amino-1-hydroxyethyl)phosphonate
BM02325001	<u>C20278</u>	(2R,3R)-3-Methylornithinyl-N6-lysine
AN00971001	<u>C04411</u>	(2R,3S)-3-Isopropylmalic acid
	<u>C03943</u>	
AN00423002		(2R,4S)-2,4-Diaminopentanoic acid
AN00578003	<u>C05161</u>	(2R,5S)-2,5-Diaminohexanoic acid
AN01371003	<u>C04593</u>	(2S,3R)-3-Hydroxybutane-1,2,3-tricarboxylic acid
BM01111001	<u>C20258</u>	(2S,4S)-4-Hydroxy-2,3,4,5-tetrahydrodipicolinic acid
BM00926005	<u>C17366</u>	(2S,5S)-trans-Carboxymethylproline
BM01083005	<u>C11405</u>	(3R)-3-Isopropenyl-6-oxoheptanoic acid
AN00578004	<u>C01142</u>	(3S)-3,6-Diaminohexanoic acid
AN00578005	<u>C01186</u>	(3S,5S)-3,5-Diaminohexanoic acid
AN05016000	<u>C05786</u>	(3Z)-Phycocyanobilin
AN01194003	<u>C04575</u>	(4R,5S)-4,5,6-Trihydroxy-2,3-dioxohexanoic acid
AN03088000	C06429	(4Z,7Z,10Z,13Z,16Z,19Z)-Docosahexaenoic acid
BM01706000	C20817	(5S)-3-(2-Aminoethylsulfanyl)-7-oxo-1-
Billotrooodo	<u></u>	azabicyclo[3.2.0]heptane-2-carboxylic acid
AN02882006	<u>C07354</u>	(7S,8S)-DiHODE
	<u>C07354</u> C16513	(75,85)-DIHODE (7Z,10Z,13Z,16Z,19Z)-Docosapentaenoic acid
AN03120001		
AN02804003	<u>C03242</u>	(8Z,11Z,14Z)-Icosatrienoic acid
BM00638000	<u>C04350</u>	(E)-4-Hydroxyphenylacetaldehyde oxime
AN00956001	<u>C03230</u>	(Indol-3-yl)glycolaldehyde
AN00077000	<u>C03194</u>	(R)-1-Aminopropan-2-ol
AN00441003	<u>C04272</u>	(R)-2,3-Dihydroxy-3-methylbutanoic acid
AN00598000	<u>C06007</u>	(R)-2,3-Dihydroxy-3-methylpentanoic acid
AN00769008	<u>C02488</u>	(R)-2-Ethylmalic acid
AN01371001	C01251	(R)-2-Hydroxybutane-1,2,4-tricarboxylic acid
AN00769012	C01088	(R)-3,3-Dimethylmalic acid
AN00573009	C14463	(R)-3-Hydroxy-3-methyl-2-oxopentanoic acid
AN00422002	011100	(R)-3-Hydroxyhexanoic acid
AN00573011	C01053	(R)-4-Dehydropantoic acid
AN00598002	C00418	(R)-Mevalonic acid
	<u>C00418</u> C00522	(R)-Pantoic acid
AN00598001		
AN00360000	<u>C00450</u>	(S)-2,3,4,5-Tetrahydropyridine-2-carboxylic acid
AN00769011	<u>C16390</u>	(S)-2-(Hydroxymethyl)glutaric acid
AN00573008	<u>C06006</u>	(S)-2-Aceto-2-hydroxybutanoic acid
BM00606000	<u>C03742</u>	(S)-4-Hydroxymandelonitrile
AN00561008	<u>C03656</u>	(S)-5-Amino-3-oxohexanoic acid
AN00429000	<u>C02091</u>	(S)-Ureidoglycine
AN00184002	C20249	(Z)-3-Peroxyaminoacrylic acid
AN00981001		1,2-Dehydrosalsolinol
AN00767000	C15606	1,2-Dihydroxy-5-(methylthio)pent-1-en-3-one
BM01817000	C16196	1,2-Dihydroxynaphthalene-6-sulfonic acid
AN04326000	<u>C04823</u>	1-(5'-Phosphoribosyl)-5-amino-4-(N-
11107320000	<u>C07023</u>	succinocarboxamide)-imidazole
AN03221000	C04677	1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamic
	<u>C04677</u> C01214	
BM01009002	<u>C01214</u>	1-Amino-1-deoxy-scyllo-inositol
AN00171002	<u>C01234</u>	1-Aminocyclopropane-1-carboxylic acid
AN01481002	<u>C11437</u>	1-Deoxy-D-xylulose 5-phosphate
AN02657000	<u>C04545</u>	1-Methylguanosine
AN00247003	<u>C03564</u>	1-Pyrroline-2-carboxylic acid
AN00380007	<u>C04282</u>	1-Pyrroline-4-hydroxy-2-carboxylic acid
AN00247000	<u>C03912</u>	1-Pyrroline-5-carboxylic acid
AN04478002	C00234	10-Formyltetrahydrofolic acid
AN02975002	C14780	11(R)-HETE
AN02975008	C14770	11,12-EET
AN03167002	C05949	12-Keto-leukotriene B4
AN03167002 AN03968003	<u>C03747</u>	
	01(211	12-Ketochenodeoxycholic acid
AN01465001	<u>C16311</u> C14907	12-Oxo-9(Z)-dodecenoic acid
AN02955000	<u>C14807</u>	12-OxoETE
AN02857002	<u>C04785</u>	13(S)-HPOT
AN02615001	<u>C14765</u>	13-OxoODE
AN02931006	C14717	15-Deoxy-Delta12,14-PGJ2

NovaMT Library No.	External Identifier	Compound
AN03427008	<u>C05960</u>	15-Keto-prostaglandin F2alpha
AN02263001		15-Methylpalmitic acid
AN02955002	<u>C04577</u>	15-OxoETE
AN03196005	<u>C14781</u>	15H-11,12-EETA
AN02975010	<u>C14778</u>	16(R)-HETE
AN02744000	<u>C05140</u>	16alpha-Hydroxyandrost-4-ene-3,17-dione
AN02615006	<u>C16346</u>	17-Hydroxylinolenic acid
AN02975005	C14749	19(S)-HETE
AN02615005	C16342	2(R)-HOT
AN02857001	C16341	2(R)-HPOT
AN00162000		2,2,2-Trifluoroethanol
BM00903001	C03972	2,3,4,5-Tetrahydrodipicolinic acid
AN00887001		2,3,4-Trihydroxybenzoic acid
AN00355000	C03458	2,3,6-Trihydroxypyridine
AN00858000		2,3-Diaminosalicylic acid
BM01244007	C06580	2,3-Dihydroxy-p-cumic acid
AN03057000	C14794	2,3-Dinor-8-iso prostaglandin F2alpha
AN01906009	C19972	2,4-Bis(acetamido)-2,4,6-trideoxy-beta-L-altropyranose
BM00663001	<u>C16399</u> C16399	2,4-Dis(acetanindo)-2,4,0-titleoxy-oeta-L-antopyranose
BM00317000	<u>C14401</u>	2,4-Diaminotoluene
AN00297002	CO (201	2,4-Dihydroxybutanoic acid
AN01161001	<u>C06201</u>	2,4-Dihydroxyhept-2-enedioic acid
AN00732000	<u>C20781</u>	2,4-Diketo-3-deoxy-L-fuconic acid
PR01750000		2,5-Dihydroxybenzoate 2-O-sulfate
PR03108001		2,5-Dihydroxybenzoate 5-O-glucuronide
PR01750001		2,5-Dihydroxybenzoate 5-O-sulfate
AN00392002	<u>C00433</u>	2,5-Dioxopentanoic acid
AN01068000	<u>C04744</u>	2,6-Diamino-4-hydroxy-5-N-
		methylformamidopyrimidine
BM00843001	C16397	2,6-Diamino-4-nitrotoluene
AN00679002	C15523	2,6-Dihydroxynicotinic acid
AN00856004	C06207	2,6-Dihydroxyphenylacetic acid
AN02050000	C04441	2-(3-Carboxy-3-aminopropyl)-L-histidine
AN03566000	<u></u>	2-(acetylamino)-1,5-anhydro-2-deoxy-3-O-b-D-
AIN05500000		· · · · · ·
A NIO0418000	C00000	galactopyranosyl-D-arabino-Hex-1-enitol
AN00418000	<u>C00900</u>	2-Acetolactic acid/(S)-2-Acetolactic acid
AN01184000	<u>C16850</u>	2-Amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid
ED00601000	<u>C04075</u>	2-Amino-4-chloro-4-pentenoic acid
BM01184001	<u>C21247</u>	2-Amino-5-epi-valiolone
AN00561006	<u>C05825</u>	2-Amino-5-oxohexanoic acid
AN00514000	<u>C03824</u>	2-Aminomuconate semialdehyde
AN01633000	<u>C20653</u>	2-Benzylmalic acid
AN01509000	<u>C11434</u>	2-C-Methyl-D-erythritol 4-phosphate
AN01229000	<u>C05604</u>	2-Carboxy-2,3-dihydro-5,6-dihydroxyindole
AN01214000	<u>C06473</u>	2-Dehydro gluconic acid
AN00594003	C03826	2-Dehydro-3-deoxy-D-xylonic acid
AN00769000	<u>C03827</u>	2-Dehydro-3-deoxy-L-fuconic acid
AN00993001	C01216	2-Dehydro-3-deoxy-galactonic acid
AN00993010	<u>C06892</u>	2-Deoxy-5-keto-D-gluconic acid
AN00796005	C02781	2-Deoxyglactopyranose
AN01385001	C05835	2-Formaminobenzoylacetic acid
BM00322000	C07103	2-Hydroxy-1,4-benzoquinone
BM00522000 BM00252002	<u>C007105</u> C00596	2-Hydroxy-2,4-pentadienoic acid
	<u>C00398</u>	
PR02098001	005250	2-Hydroxy-3-(4-hydroxyphenyl)propenoate O-sulfate
AN01019002	<u>C05350</u>	2-Hydroxy-3-(4-hydroxyphenyl)propenoic acid
AN00966006	<u>C03217</u>	2-Hydroxy-3-oxoadipic acid
AN00592000	<u>C03459</u>	2-Hydroxy-3-oxosuccinic acid
AN00793003	<u>C02763</u>	2-Hydroxy-3-phenylpropenoic acid
AN01288001	<u>C04642</u>	2-Hydroxy-5-carboxymethylmuconate semialdehyde
BM00909003	<u>C07478</u>	2-Hydroxy-5-methyl-cis,cis-muconic acid
AN01455000	C12624	2-Hydroxy-6-ketononatrienedioic acid
BM01987000	<u>C06587</u>	2-Hydroxy-6-oxo-6-(4'-chlorophenyl)-hexa-2,4-dienoic acid
AN01483000	C04479	2-Hydroxy-6-oxonona-2,4-diene-1,9-dioic acid
BM01606001	C14106	2-Hydroxy-7-hydroxymethylchromene-2-carboxylic aci
BM00371001	C11354	2-Hydroxy-cis-hex-2,4-dienoic acid
BM00254008	<u>C011354</u> C01147	2-Hydroxycyclohexan-1-one
AN01137002	<u>C01147</u>	
ANULL37002		2-Hydroxydecanoic acid

NovaMT Library No.	External Identifier	Compound
AN00414001	<u>C03981</u>	2-Hydroxyethylenedicarboxylic acid
AN00909000	<u>C05600</u>	2-Hydroxyhepta-2,4-dienedioic acid
BM00525004	C00682	2-Hydroxymuconate semialdehyde
BM00711002	C02501	2-Hydroxymuconic acid
PR01724005	<u>C02501</u>	2-Hydroxyphenylacetic acid O-sulfate
AN00751001		2-Indolecarboxylic acid
	602621	
AN00715001	<u>C02631</u>	2-Isopropylmaleic acid
BM00711000	<u>C02222</u>	2-Maleylacetic acid
AN00626002	<u>C17883</u>	2-Methoxy-4-vinylphenol
AN01032000	<u>C06050</u>	2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylic aci
AN00532000		2-Methyl-4-heptanone
AN00725002		2-Methylbutyrylglycine
AN01371002	<u>C02225</u>	2-Methylcitric acid
BM00699000	C14099	2-Naphthaldehyde
BM00525005	C03586	2-Oxo-2,3-dihydrofuran-5-acetic acid
AN00583003	C05941	2-Oxo-4-hydroxy-5-aminovaleric acid
AN00995003	<u>C20327</u>	2-Oxo-4-phenylbutyric acid
AN00927000	<u>C03771</u>	2-Oxoarginine
AN00557000	<u>C00940</u>	2-Oxoglutaramic acid
AN00909001	C03063	2-Oxohept-3-enedioic acid
AN00971002	C05994	2-Propylmalic acid
AN00023000	C05985	2-Propynal
AN03075000	C16519	2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1
AIN05075000	<u>C10515</u>	
D) (01757000	622072	carboxylic acid
BM01757002	<u>C22073</u>	2-[(2-Aminoethylcarbamoyl)methyl]-2-
		hydroxybutanedioic acid
BM01198003	<u>C17691</u>	2-epi-5-epi-Valiolone
AN01592008	<u>C03461</u>	2-trans,6-trans-Farnesal
AN03326000	C00942	3',5'-Cyclic GMP
PR03664000		3,4-Dihydroxy-L-phenylalanine 3-O-glucuronide
AN00856003	C05577	3,4-Dihydroxymandelaldehyde
	<u>C03311</u>	
PR03312004		3,4-Dihydroxymandelaldehyde 3-O-glucuronide
PR01931004		3,4-Dihydroxymandelaldehyde 3-O-sulfate /3,4-
		Dihydroxymandelaldehyde 4-O-sulfate
PR01931005		3,4-Dihydroxymandelaldehyde 4-O-sulfate
PR03520002		3,4-Dihydroxymandelate 4-O-glucuronide
AN00647004	C04043	3,4-Dihydroxyphenylacetaldehyde
PR03312003		3,4-Dihydroxyphenylacetate 4-O-glucuronide
PR01931002		3,4-Dihydroxyphenylacetic acid 3-O-sulfate
AN00674004		3,4-Dihydroxyphenylethanol
	610145	
AN01052011	<u>C10447</u>	3,4-Dihydroxyphenylpropanoic acid
AN01040000		3,4-Dimethoxyphenylethylamine
AN00823015	<u>C01198</u>	3-(2-Hydroxyphenyl)propanoic acid
AN01266003	C01207	3-(3,4-Dihydroxyphenyl)lactic acid
AN01241000	C04045	3-(3,4-Dihydroxyphenyl)pyruvic acid
PR03466000		3-(4-Hydroxyphenyl)pyruvate O-glucuronide
AN01019001	<u>C01179</u>	3-(4-Hydroxyphenyl)pyruvic oʻglucuronide 3-(4-Hydroxyphenyl)pyruvic acid
	<u>con73</u>	
AN00255000	60.10.50	3-Amino-2-piperidone
AN01037005	<u>C04368</u>	3-Amino-3-(4-hydroxyphenyl)propanoic acid
BM01665000	<u>C12469</u>	3-Amino-4,7-dihydroxy-8-chlorocoumarin
BM00657002	<u>C12115</u>	3-Amino-4-hydroxybenzoic acid
AN00065001	<u>C05665</u>	3-Aminopropanal
AN01633001	C20654	3-Benzylmalic acid
AN00047000	C06145	3-Butynal
BM00253000	C02512	
		3-Cyano-L-alanine
AN01214006	<u>C00618</u>	3-Dehydro-L-gulonic acid
AN00435002	<u>C03064</u>	3-Dehydro-L-threonic acid
AN01161002	<u>C00944</u>	3-Dehydroquinic acid
AN00909002	<u>C02637</u>	3-Dehydroshikimic acid
AN02696000	C02934	3-Dehydrosphinganine
BM01169004	C12459	3-Dimethylallyl-4-hydroxybenzaldehyde
BM01379000	<u>C12458</u>	3-Dimethylallyl-4-hydroxybenzoic acid
BM01781000	<u>C12457</u>	3-Dimethylallyl-4-hydroxymandelic acid
AN00769009	<u>C01989</u>	3-Ethylmalic acid
AN00157000	<u>C16310</u>	3-Hexenal
AN00283003		3-Hydroxy-2-methyl-[S-(R,R)]-butanoic acid
AN00418003	C04181	3-Hydroxy-3-methyl-2-oxobutanoic acid
BM00573003		
	C16272	3-Hydroxy-5-oxohexanoic acid

NovaMT Library No.	External Identifier	Compound
AN01634002	<u>C03227</u>	3-Hydroxy-L-kynurenine
AN00406001		3-Hydroxy-L-proline
AN01353000	C01259	3-Hydroxy-N6,N6,N6-trimethyl-L-lysine
BM00711001	C03676	3-Hydroxy-cis,cis-muconic acid
PR03918001	<u></u>	3-Hydroxy-kynurenine O-glucuronide
BM00333002	C14602	3-Hydroxyaminophenol
	<u>C14002</u>	
PR01738000		3-Hydroxyanthranilate O-sulfate
BM01229006		3-Hydroxyhippuric acid
AN01029004	<u>C05636</u>	3-Hydroxykynurenamine
PR03469001		3-Hydroxykynurenamine O-glucuronide
AN01019004		3-Hydroxyphenylpyruvic acid
AN00487000	C18620	3-Hydroxypicolinic acid
AN00070002	C00969	3-Hydroxypropanal
AN01831000		3-Mercaptolactate-cysteine disulfide
AN00823014	C05581	3-Methoxy-4-hydroxyphenylacetaldehyde
	<u>C03501</u>	3-Methoxy-4-hydroxyphenylacetaldehyde O-glucuronic
PR03283000	605504	
AN01079002	<u>C05594</u>	3-Methoxy-4-hydroxyphenylethyleneglycol
AN01052010	<u>C05583</u>	3-Methoxy-4-hydroxyphenylglycolaldehyde
BM00299001	<u>C07209</u>	3-Methylbenzaldehyde
BM00594000	C06029	3-Methylmalic acid/D-erythro-3-Methylmalic acid
BM00873002	C12477	3-Methylpyrrole-2,4-dicarboxylic acid
BM00460007	C14087	3-Methylsalicylaldehyde
	C14418	3-Nitrophenol
BM00487002	<u>C14416</u>	1
AN01655000		3-Nitrotyrosine
AN01108002		3-Oxodecanoic acid
AN00396004	<u>C02122</u>	3-Oxohexanoic acid
AN00718001		3-Oxooctanoic acid
AN00117001	C00222	3-Oxopropanoic acid
BM01392003		3-Phenylpropionylglycine
AN00971003	C02123	3-Propylmalic acid
	<u>C02125</u>	
AN00814002	2 00 - 0 -	3-Pyridinebutanoic acid
AN00655000	<u>C00606</u>	3-Sulfino-L-alanine
BM01157000	<u>C06336</u>	3-Sulfocatechol
AN02127003		3-hydroxy-3-(3-hydroxyphenyl)propanoic acid-O- sulphate
AN04196001	C04554	3alpha,7alpha-Dihydroxy-5beta-cholestanic acid
AN04056003	C17333	3beta-Hydroxy-5-cholestenoic acid
AN03682004	<u>011355</u>	3beta-Hydroxy-delta5-cholenic acid
AN00751003	C05639	4,6-Dihydroxyquinoline
AN00751004	<u>C05637</u>	4,8-Dihydroxyquinoline
AN01620000	<u>C05652</u>	4-(2-Amino-5-hydroxyphenyl)-2,4-dioxobutanoic acid
AN01385000	<u>C01252</u>	4-(2-Aminophenyl)-2,4-dioxobutanoic acid
AN03414000	<u>C06118</u>	4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-galacturoni acid
AN01694002	<u>C04796</u>	4-(L-Alanin-3-yl)-2-hydroxy-cis,cis-muconate 6- semialdehyde
AN02791000	<u>C21107</u>	4-(beta-D-Ribofuranosyl)phenol 5'-phosphate
AN01643000	<u>C11355</u>	4-Amino-4-deoxychorismic acid
AN00493001	<u>C01279</u>	4-Amino-5-hydroxymethyl-2-methylpyrimidine
AN00115001	<u>C00555</u>	4-Aminobutyraldehyde
BM00333000	<u>C18351</u>	4-Aminocatechol
AN01217000		4-Aminohippuric acid
BM01100002	C04484	4-Carboxy-2-hydroxymuconate semialdehyde
BM01026000	C22137	4-Chloro-L-lysine
BM00354000	C14450	4-Chloroaniline
BM00365000	<u>C02124</u>	4-Chlorophenol
AN00884000	<u>C03077</u>	4-Chlorophenylacetic acid
BM00368000	<u>C16473</u>	4-Fluorocatechol
AN00386000	<u>C02647</u>	4-Guanidinobutanal
AN00551000	C03078	4-Guanidinobutanamide
AN00256001		4-Heptanone
	C02590	
BM00418004	<u>C03589</u>	4-Hydroxy-2-oxopentanoic acid
PR03076004		4-Hydroxy-3-methoxy-benzaldehyde O-glucuronide
BM00979000	<u>C06034</u>	4-Hydroxy-4-methylglutamic acid
AN03933001		4-Hydroxy-5-(3',5'-dihydroxyphenyl)-valeric acid-O- glucuronide
AN01189000		4-Hydroxydebrisoquine
		. 11 aconjacono quine

NovaMT Library No.	External Identifier	Compound
AN00460001	<u>C03765</u>	4-Hydroxyphenylacetaldehyde
PR02872001		4-Hydroxyphenylacetaldehyde O-glucuronide
AN00481000	<u>C06044</u>	4-Hydroxyphenylethanol
BM00818005	C03590	4-Hydroxyphenylglyoxylic acid
AN01288000	C01036	4-Maleylacetoacetic acid /4-Fumarylacetoacetic acid
BM00754000	C06234	4-Methyl-L-glutamic acid
BM00711003	C06035	4-Methylene-2-oxoglutaric acid
BM00722001	<u>C00651</u>	4-Methylene-L-glutamic acid
BM00716001	<u>C01109</u>	4-Methylene-L-glutamine
AN00593000	<u>C01180</u>	4-Methylthio-2-oxobutanoic acid
AN01076002		4-O-Methylgallic acid
AN00785001	<u>C19567</u>	4-Oxo-1-(3-pyridyl)-1-butanone
AN00380006	C01877	4-Oxoproline
AN02714004	C16683	4-Oxoretinol
AN00808002	C00971	4-Pyridoxolactone
BM01157001	C06674	4-Sulfocatechol
	C18349	
BM03412000	<u>C18549</u>	4-[2-(5-Carboxy-2-hydroxy-3-methoxyphenyl)-2-
		oxoethylidene]-2-hydroxy-2-pentenedioic acid
AN00505003	<u>C20522</u>	4-imidazolylpropanoic acid
AN01981001	<u>C05198</u>	5'-Deoxyadenosine
AN02975012	C04805	5(S)-HETE
AN00606002	C05578	5,6-Dihydroxyindole
AN02975006	C14768	5,6-EET
AN03167000	<u>C14815</u>	5,6-Epoxytetraene
		5,6-Indolequinone-2-carboxylic acid
AN01177000	<u>C17938</u>	
AN01668003	<u>C05655</u>	5-(2'-Carboxyethyl)-4,6-dihydroxypicolinic acid
AN02003000	<u>C05641</u>	5-(3'-Carboxy-3'-oxopropenyl)-4,6-dihydroxypicolinio
AN02031000	C05656	acid 5-(3'-Carboxy-3'-oxopropyl)-4,6-dihydroxypicolinic ac
	<u>C03087</u>	
AN00725008		5-Acetamidopentanoic acid
AN00406003	<u>C01110</u>	5-Amino-2-oxopentanoic acid
AN00174001	<u>C12455</u>	5-Aminopentanal
AN00270000	<u>C00990</u>	5-Aminopentanamide
BM01455001	<u>C18338</u>	5-Carboxyvanillic acid
AN00966000	C04053	5-Dehydro-4-deoxy-D-glucuronic acid
AN01214010	C21644	5-Dehydro-L-gluconic acid
AN00993009	C16737	5-Deoxy-D-glucuronic acid
	C12248	5-Hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-
AN01314000	<u>C12246</u>	carboxylic acid
AN01992000	C05648	5-Hydroxy-N-formylkynurenine
AN00956002	<u>C05634</u>	5-Hydroxyindoleacetaldehyde
AN01180000	<u>C05635</u>	5-Hydroxyindoleacetic acid
AN01559000	<u>C05646</u>	5-Hydroxyindolepyruvic acid
AN01029003	C05638	5-Hydroxykynurenamine
PR03469000		5-Hydroxykynurenamine O-glucuronide
PR02102000		5-Hydroxykynurenamine O-sulfate
AN01634001	<u>C05651</u>	
	<u>C05051</u>	5-Hydroxykynurenine
PR03918000	005044	5-Hydroxykynurenine O-glucuronide
AN02012000	<u>C05844</u>	5-L-Glutamyl-taurine
AN01360003	<u>C05660</u>	5-Methoxyindoleacetic acid
AN01186000		5-Methoxytryptophol
AN02955001	<u>C14732</u>	5-OxoETE
AN00266002	C03273	5-Oxopentanoic acid
AN01846000	C03366	5-Phosphooxy-L-lysine
AN01692000	C03090	5-Phosphoribosylamine
EF01663003	<u>C03070</u>	5-Tetradecenoic acid
AN03819001		5beta-Cholanic acid-3, 7-dione
AN01232000	<u>C01300</u>	6-(Hydroxymethyl)-7,8-dihydropterin
AN01114000	<u>C05548</u>	6-Acetamido-2-oxohexanoic acid
AN00561007	C03239	6-Amino-2-oxohexanoic acid
BM00422001	C06103	6-Hydroxyhexanoic acid
AN01356000	C05663	6-Hydroxykynurenic acid
PR04107000	<u>C03003</u>	6-Hydroxymelatonin O-glucuronide
	C05062	
AN03615002	<u>C05962</u>	6-Keto-prostaglandin E1
AN03641001	<u>C05961</u>	6-Keto-prostaglandin F1alpha
AN00514001	<u>C04226</u>	6-Oxo-1,4,5,6-tetrahydronicotinic acid
AN01790002	<u>C03684</u>	6-Pyruvoyltetrahydropterin
AN01811004	C02953	7,8-Dihydrobiopterin

NovaMT Library No.	External Identifier	Compound
AN02034000	<u>C04874</u>	7,8-Dihydroneopterin
AN01035001	<u>C21065</u>	7,8-Dihydroxanthopterin
AN01011000	<u>C16675</u>	7-Aminomethyl-7-carbaguanine
AN00954000	<u>C15996</u>	7-Cyano-7-carbaguanine
BM00550002	<u>C16590</u>	7-Oxoheptanoic acid
AN04160000	<u>C17337</u>	7alpha-Hydroxy-3-oxo-4-cholestenoic acid
PR04523004		7alpha-Hydroxydehydroepiandrosterone 3-O-glucuronide
AN02975001	<u>C14776</u>	8(S)-HETE
AN02975007	<u>C14769</u>	8,9-EET
AN00898021	<u>C18202</u>	8-Methyl-6-nonenoic acid
AN02615003	<u>C04780</u>	8-[(1R,2R)-3-Oxo-2-{(Z)-pent-2-
		enyl}cyclopentyl]octanoic acid
AN02650001	<u>C14825</u>	9(10)-EpOME
AN03819002		9(11), (5beta)-Cholenic acid-3alpha-ol-12-one
AN02650000	<u>C14767</u>	9(S)-HODE
AN02615002	<u>C16326</u>	9(S)-HOT
AN02912002	C14828	9,10-DHOME
AN02615000	C14766	9-OxoODE
AN00918000	C16322	9-Oxononanoic acid
AN02413001	C04056	9-cis,11-trans-Octadecadienoic acid
AN02464003	C16681	9-cis-Retinal
AN02714005	C15493	9-cis-Retinoic acid
AN00119000	C01769	Acetoin
BM00107001	C02659	Acetone cyanohydrin
AN03822000	C05993	Acetyl adenylic acid
BM00396001	<u>C06102</u>	Adipate semialdehyde
AN03151000	C16527	Adrenic acid
AN01036000	<u>C10527</u>	Adrenochrome o-semiquinone
AN01030000 AN04929000	C05554	Adrenochionie o-sennquinone
	<u>C03554</u>	Alanyl-Hydroxyproline
AN01320000	C00806	
AN02337000	<u>C00806</u>	Alanyl-Tryptophan/Tryptophyl-Alanine
AN00718002	006725	Alpha-Ketooctanoic acid
AN00028000	<u>C06735</u>	Aminoacetaldehyde
AN00065000	<u>C01888</u>	Aminoacetone
AN00113000	<u>C20253</u>	Aminoacrylic acid
BM00333001	<u>C14604</u>	Aminohydroquinone
AN00287000	<u>C00872</u>	Aminomalonic acid
AN02776000	<u>C00219</u>	Arachidonic acid
AN02758000		Arginyl-Glutamic acid
AN02745000		Arginyl-Lysine
AN00966003	<u>C00072</u>	Ascorbic acid
AN02109000		Asparaginyl-Glutamine
AN01887000		Asparaginyl-Hydroxyproline
AN01720000		Asparaginyl-Valine
AN01708005		Aspartyl-L-proline
AN03174000	<u>C04540</u>	Aspartylglycosamine
BM02257001	<u>C20942</u>	Bacilysin
BM00344000	<u>C02814</u>	Benzene-1,2,4-triol
AN00818000		Benzoquinoneacetic acid
AN02899000		Beta-D-Glucopyranuronic acid
AN05473000	<u>C16564</u>	Bis(glutathionyl)spermine disulfide
AN04623000	<u>C03646</u>	Bis-gamma-glutamylcystine
AN00061003	C02845	Butanone
AN04155000	C05673	CMP-2-aminoethylphosphonate
AN05180000	C03691	CMP-N-glycoloylneuraminic acid
AN04469000	C05674	CMP-N-trimethyl-2-aminoethylphosphonate
AN05743000	C00323	Caffeovl-CoA
AN0036000	C01563	Carbamic acid
BM01872001	<u>C20818</u>	Carbapenem biosynthesis intermediate 2
	<u>C20818</u> C20821	Carbapenem biosynthesis intermediate 2 Carbapenem biosynthesis intermediate 6
BM00842003		· ·
AN01660003	<u>C00386</u>	Carnosine
BM00227000	<u>C00090</u>	Catechol
BM00903000	<u>C21249</u>	Cetoniacytone B
BM00086000	<u>C06754</u>	Chloroacetaldehyde
AN01654001	<u>C00251</u>	Chorismic acid
BM00898014	<u>C16462</u>	Citronellic acid
BM05307000	<u>C12032</u>	Clorobiocin
AN02387002	C07289	Crepenynic acid

NovaMT Library No.	External Identifier	Compound
AN00013000	<u>C01417</u>	Cyanic acid
BM00108000	<u>C16267</u>	Cyclopropanecarboxylic acid
AN01797000	600007	Cystathionine sulfoxide
AN00304000	<u>C00097</u>	Cysteine Cysteinyd Throening
AN01608001 PR03873000		Cysteinyl-Threonine Cysteinyldopa 3-O-sulfate
PR03873001		Cysteinyldopa 4-O-sulfate
AN00681001	C04122	D-1-Aminopropan-2-ol O-phosphate
AN01194002	001122	D-Glucaro-1,4-lactone
AN02250000	C01726	D-Lombricine
AN01548006	<u>C04020</u>	D-Lysopine
AN01908000	C04137	D-Octopine
AN00594008	C06032	D-erythro-3-Methylmalic acid
BM01057002	C14113	Decahydro-2-naphthoic acid
AN00113001	C02218	Dehydroalanine
AN05236000		Dehydroisocoproporphyrinogen
AN03167003	<u>C05958</u>	Delta-12-Prostaglandin J2
AN00360001	<u>C04092</u>	Delta1-Piperideine-2-carboxylic acid
AN02287001	<u>C18133</u>	Deoxyshikonin
BM02863000	<u>C05143</u>	Dhurrin
BM00371002	<u>C06719</u>	Dihydrophloroglucinol
PR03639001		Dihydrotestosterone 17-O-sulfate
AN00592001	<u>C00975</u>	Dihydroxyfumaric acid
AN02485001		Diphenol glucuronide
AN03523001		Dityrosine
AN01229001	<u>C00822</u>	Dopaquinone
AN00528000	<u>C06231</u>	Ectoine
AN01696000		Endalin
AN02339000	C1 (21)	Epsilon-(gamma-Glutamyl)-Lysine
AN02585003	<u>C16319</u>	Etherolenic acid
AN00256002	61 (500	Ethyl isobutyl ketone
AN01784000	<u>C16502</u>	Farnesoic acid
AN01408002	<u>C05647</u>	Formyl-5-hydroxykynurenamine
PR03769000		Formyl-5-hydroxykynurenamine O-glucuronide
PR02520000	605653	Formyl-5-hydroxykynurenamine O-sulfate
AN00808001	<u>C05653</u>	Formylanthranilic acid
AN00938000 AN02121000	<u>C16674</u>	Formylisoglutamine Gamma-glutamyl-ornithine
AN02121000 AN00477005	C05585	Gentisate aldehyde
PR02900001	<u>C05585</u>	Gentisate aldehyde 2-O-glucuronide
PR02900002		Gentisate aldehyde 5-O-glucuronide
BM00866012	C16461	Geranic acid
AN02089000		Glutaminyl-Hydroxyproline
AN03144000		Glutaminyl-Tryptophan
AN01874000		Glutamyl-Proline
AN01144001		Glutaryl-Glycine
AN02808000	<u>C00051</u>	Glutathione
AN05115000	C00127	Glutathione disulfide
AN04193000	<u>C05730</u>	Glutathionylspermidine
AN01334004		Glycyl-Gamma-glutamic acid
AN02477000		Glycyl-Prolyl-Hydroxyproline
AN00029000	<u>C17349</u>	Guanidine
AN01242000	<u>C00800, C00257</u>	Gulonic acid
AN05127000		Harderoporphyrinogen
AN03196003	<u>C14808</u>	Hepoxilin A3
AN01945000	<u>C16343</u>	Heptadecatrienal
AN02184003	<u>C16344</u>	Heptadecatrienoic acid
AN01828000	<u>C00517</u>	Hexadecanal
AN02496000	<u>C19615</u>	Hexadecanedioic acid
AN02055000	<u>C00249</u>	Hexadecanoic acid
AN02050001		Histidinyl-Threonine
AN03270000		Histidinyl-Tryptophan
AN02951002	600001	Histidinyl-Tyrosine
AN01826000	<u>C00884</u>	Homocarnosine
PR03312000		Homogentisic acid 2-O-glucuronide
PR03312001		Homogentisic acid 5-O-glucuronide
PR03489000 PM00210001	602720	Homovanillate O-glucuronide
BM00219001	C02720	Hydroxylaminobenzene

NovaMT Library No.	External Identifier	Compound
AN00743001		Hydroxyoctanoic acid
AN01887001		Hydroxyprolyl-Asparagine
AN02089002		Hydroxyprolyl-Gamma-glutamic acid
AN02089001		Hydroxyprolyl-Glutamine
AN02226000		Hydroxyprolyl-Histidine
AN01684001		Hydroxyprolyl-Proline
AN01544003		Hydroxyprolyl-Serine
AN02608001		Hydroxyprolyl-Tyrosine
AN01711000		Hydroxyprolyl-Valine
AN00193002	C00168	Hydroxypyruvic acid
AN02004001	<u></u>	Hydroxysepiapterin
	016535	
AN02827002	<u>C16525</u>	Icosadienoic acid
AN02804004	<u>C16522</u>	Icosatrienoic acid
AN00698000	<u>C05568</u>	Imidazole lactic acid
AN00671001	C03277	Imidazole pyruvic acid
AN00403001	C05840	Iminoaspartic acid
AN00064000	C15809	Iminoglycine
AN00582000	<u>C05579</u>	Indole-5,6-quinone
AN01360002	<u>C02043</u>	Indolelactic acid
AN01332000	C00331	Indolepyruvic acid
AN00431003	C05658	Indoxyl
AN01844001	C04299	Inositol cyclic phosphate
	04299	
AN00561001		Isobutyrylglycine
AN01194007	<u>C00311</u>	Isocitric acid
AN01052002		Isohomovanillic acid
AN01876002		Isoleucyl-Hydroxyproline
AN01548000		Isoleucyl-Serine
AN01735001		Isoleucyl-Threonine
	G1 (210	
AN01640006	<u>C16318</u>	Isomer 1 of (+)-7-Isomethyljasmonic acid
BM01755001	<u>C16600</u>	Isomer 1 of (-)-threo-Iso(homo)3-citric acid
AN02027002	C08362	Isomer 1 of (9Z)-Hexadecenoic acid
AN00441003	C04272	Isomer 1 of (R)-2,3-Dihydroxy-3-methylbutanoic acid
AN00767000	C15606	Isomer 1 of 1,2-Dihydroxy-5-(methylthio)pent-1-en-3-on
BM01817000	<u>C16196</u>	Isomer 1 of 1,2-Dihydroxynaphthalene-6-sulfonic acid
BM01009002	<u>C01214</u>	Isomer 1 of 1-Amino-1-deoxy-scyllo-inositol
AN00171002	<u>C01234</u>	Isomer 1 of 1-Aminocyclopropane-1-carboxylic acid
AN02615001	C14765	Isomer 1 of 13-OxoODE
AN03427008	C05960	Isomer 1 of 15-Keto-prostaglandin F2alpha
AN00355000	<u>C03458</u>	Isomer 1 of 2,3,6-Trihydroxypyridine
	C21247	Isomer 1 of 2-Amino-5-epi-valiolone
BM01184001	<u>C21247</u>	1
AN00726001		Isomer 1 of 2-Aminooctanoic acid
AN00796005	<u>C02781</u>	Isomer 1 of 2-Deoxygalactopyranose
BM01987000	C06587	Isomer 1 of 2-Hydroxy-6-oxo-6-(4'-chlorophenyl)-hexa
		2,4-dienoic acid
AN00197004	C05984	Isomer 1 of 2-Hydroxybutyric acid
	<u>C03704</u>	
AN01137002		Isomer 1 of 2-Hydroxydecanoic acid
AN00177004	<u>C00109</u>	Isomer 1 of 2-Ketobutyric acid
AN00396002	<u>C00902</u>	Isomer 1 of 2-Ketohexanoic acid
AN00995003	C20327	Isomer 1 of 2-Oxo-4-phenylbutyric acid
AN00255000		Isomer 1 of 3-Amino-2-piperidone
AN00255000 AN00283003		Isomer 1 of 3-Hydroxy-2-methyl-[S-(R,R)]-butanoic act
	G1 4007	
BM00460007	<u>C14087</u>	Isomer 1 of 3-Methylsalicylaldehyde
AN01108002		Isomer 1 of 3-Oxodecanoic acid
AN00718001		Isomer 1 of 3-Oxooctanoic acid
AN02127003		Isomer 1 of 3-hydroxy-3-(3-hydroxyphenyl)propanoic
		acid-O-sulphate
A NIO0751004	005627	
AN00751004	<u>C05637</u>	Isomer 1 of 4,8-Dihydroxyquinoline
BM01026000	<u>C22137</u>	Isomer 1 of 4-Chloro-L-lysine
AN00793000	<u>C00811</u>	Isomer 1 of 4-Coumaric acid
AN00785001	C19567	Isomer 1 of 4-Oxo-1-(3-pyridyl)-1-butanone
AN00380006	C01877	Isomer 1 of 4-Oxoproline
	C00971	
AN00808002		Isomer 1 of 4-Pyridoxolactone
AN00277004	<u>C00431</u>	Isomer 1 of 5-Aminopentanoic acid
AN01274001		Isomer 1 of 5-Dodecenoic acid
AN01180000	<u>C05635</u>	Isomer 1 of 5-Hydroxyindoleacetic acid
AN00774001	C16741	Isomer 1 of 5-Hydroxylysine
AN03836002		Isomer 1 of 5 beta-Cholanic acid-12alpha-ol-3-one
BM00550002	C16590	Isomer 1 of 7-Oxoheptanoic acid
		ISOTHER LOL /-UNOPERTANOLO 2010

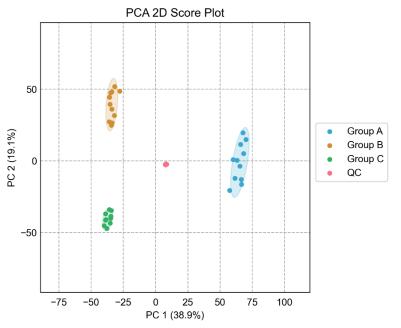
NovaMT Library No.	External Identifier	Compound
AN00918000	<u>C16322</u>	Isomer 1 of 9-Oxononanoic acid
AN00014000	<u>C00084</u>	Isomer 1 of Acetaldehyde
AN00119000	<u>C01769</u>	Isomer 1 of Acetoin
AN00026002	<u>C00207</u>	Isomer 1 of Acetone - isomer 1/Propanal
AN01036000		Isomer 1 of Adrenochrome o-semiquinone
AN01544002		Isomer 1 of Alanyl-Glutamic acid
AN00718002		Isomer 1 of Alpha-Ketooctanoic acid
AN00754003	<u>C00956</u>	Isomer 1 of Aminoadipic acid
AN02776000	<u>C00219</u>	Isomer 1 of Arachidonic acid
AN03174000	C04540	Isomer 1 of Aspartylglycosamine
AN01548006	C04020	Isomer 1 of D-Lysopine
AN00704003	C12307	Isomer 1 of Decanal/2-Decanone
AN05236000		Isomer 1 of Dehydroisocoproporphyrinogen
AN02287001	C18133	Isomer 1 of Deckyshikonin
BM00371002	C06719	Isomer 1 of Dihydrophloroglucinol
PR03639001	<u>C00717</u>	Isomer 1 of Dihydrotestosterone 17-O-sulfate
AN02485001		Isomer 1 of Dinydroitstosterone 17-0-sunate
AN00418009	005647	Isomer 1 of Ethylmalonic acid
AN01408002	<u>C05647</u>	Isomer 1 of Formyl-5-hydroxykynurenamine
AN02849001	2 00-1-	Isomer 1 of Glutamyl-Tyrosine
AN01828000	<u>C00517</u>	Isomer 1 of Hexadecanal
AN02055000	<u>C00249</u>	Isomer 1 of Hexadecanoic acid
AN00684000		Isomer 1 of Histidine
AN01061000	<u>C16511</u>	Isomer 1 of Homocysteic acid
AN00291001	<u>C00263</u>	Isomer 1 of Homoserine
AN02004001		Isomer 1 of Hydroxysepiapterin
AN01360002	C02043	Isomer 1 of Indolelactic acid
AN00574004	C16673	Isomer 1 of Isoglutamine
AN01876002		Isomer 1 of Isoleucyl-Hydroxyproline
BM00392004	C00490	Isomer 1 of Itaconic acid
AN00291005	C05519	Isomer 1 of L-Allothreonine
AN00291003 AN00410000	C00123	Isomer 1 of Leucine
AN00578000	<u>C00047</u>	Isomer 1 of Lysine
AN02121003	611010	Isomer 1 of Lysyl-Aspartic acid
BM00344001	<u>C11918</u>	Isomer 1 of Maltol
AN00608000	<u>C00073</u>	Isomer 1 of Methionine
AN00102001		Isomer 1 of Methyl propenyl ketone
AN00281003	<u>C02170</u>	Isomer 1 of Methylmalonic acid
PR00561005		Isomer 1 of N-Acetyl-(S)-2-Aminobutanoic acid
AN00583008		Isomer 1 of N-Acetyl-DL-serine
PR00189009		Isomer 1 of N-Acetyl-Ethanolamine
AN00938001	<u>C00439</u>	Isomer 1 of N-Formimino-L-glutamic acid
AN01778000	<u>C02700</u>	Isomer 1 of N-formylkynurenine
PR00943004		Isomer 1 of N5-Acetyl-L-Ornithine
AN00410003	C01933	Isomer 1 of Norleucine
AN00385000	C00408	Isomer 1 of Pipecolic acid
AN00259000	<u>C00148</u>	Isomer 1 of Proline
BM00344003	<u>C01108</u>	Isomer 1 of Pyrogallol
AN00596001	<u>C17268</u>	Isomer 1 of Pyruvophenone
	<u>C17268</u> C00042	Isomer 1 of Succinic acid
AN00281002 PM01168004	<u>C00042</u> C20914	
BM01168004	<u>C20914</u>	Isomer 1 of Tabtoxin biosynthesis intermediate 4
AN01711001		Isomer 1 of Valyl-Hydroxyproline
AN01892001		Isomer 1 of Valyl-Lysine
AN00934000	<u>C00417</u>	Isomer 1 of cis-Aconitic acid
AN01640006	<u>C16318</u>	Isomer 2 of (+)-7-Isomethyljasmonic acid
BM01755001	<u>C16600</u>	Isomer 2 of (-)-threo-Iso(homo)3-citric acid
BM01817000	<u>C16196</u>	Isomer 2 of 1,2-Dihydroxynaphthalene-6-sulfonic acid
BM00460007	<u>C14087</u>	Isomer 2 of 3-Methylsalicylaldehyde
AN00751004	<u>C05637</u>	Isomer 2 of 4,8-Dihydroxyquinoline
BM01026000	C22137	Isomer 2 of 4-Chloro-L-lysine
AN00277004	C00431	Isomer 2 of 5-Aminopentanoic acid
BM00550002	C16590	Isomer 2 of 7-Oxoheptanoic acid
AN00918000	<u>C16322</u>	Isomer 2 of 9-Oxonopanoic acid
	<u>C10322</u> C00084	
AN00014000		Isomer 2 of Acetaldehyde
AN01548006	<u>C04020</u>	Isomer 2 of D-Lysopine
AN01828000	<u>C00517</u>	Isomer 2 of Hexadecanal
AN00608000	<u>C00073</u>	Isomer 2 of Methionine
AN00281003	C02170	Isomer 2 of Methylmalonic acid

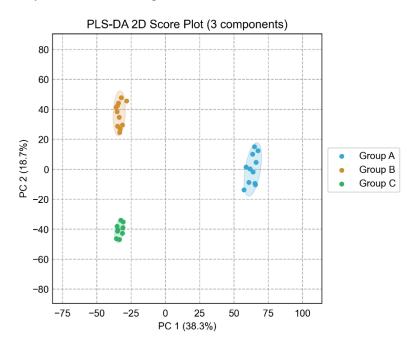
NovaMT Library No.	External Identifier	Compound
PR00943004		Isomer 2 of N5-Acetyl-L-Ornithine
AN00281002	<u>C00042</u>	Isomer 2 of Succinic acid
BM01168004	<u>C20914</u>	Isomer 2 of Tabtoxin biosynthesis intermediate 4
AN01548006	<u>C04020</u>	Isomer 3 of D-Lysopine
BM04636001	<u>C00927</u>	Isonocardicin A
AN00033000	<u>C01845</u>	Isopropanol
AN00929002		Isovalerylalanine
AN01440000	C08491	Jasmonic acid
AN00380005	C04281	L-1-Pyrroline-3-hydroxy-5-carboxylic acid
AN00273001	<u>C03508</u>	L-2-Amino-3-oxobutanoic acid
BM01144000	C03871	L-2-Amino-6-oxoheptanedioic acid
AN00583004	C05938	L-4-Hydroxyglutamate semialdehyde
BM00842002	C12323	L-4-Hydroxyphenylglycine
AN00291005	C05519	L-Allothreonine
AN00561000	C04076	L-Allysine
AN01671000	C00826	L-Arogenic acid
AN00273002	C00441	L-Aspartate 4-semialdehyde
AN00868000	C00506	L-Cysteic acid
AN01024003	C01720	L-Fuconic acid
AN01667000	C03287	L-Glutamyl 5-phosphate
AN00493000	C01929	L-Histidinal
AN01012005	C17235	L-Homophenylalanine
AN01260000	C05588	L-Metanephrine
AN00876002	C00547	L-Noradrenaline
PR01947000	<u></u>	L-Noradrenaline 3-O-sulfate
EF02022001		L-Pyridosine
BM02037000	C16138	L-Pyrrolysine
AN01024020	C01934	L-Rhamnonic acid
AN00769005	C02991	L-Rhamnono-1,4-lactone
AN02113000	<u>C02771</u>	L-Tyrosine O-sulfate
AN01900001		L-alpha-Aspartyl-L-hydroxyproline
AN0100001 AN02107001		L-alpha-glutamyl-L-hydroxyproline
BM00380002	C22141	L-beta-Ethynylserine
AN01933000	<u>C22141</u>	L-beta-aspartyl-L-aspartic acid
AN01163000		L-beta-aspartyl-L-asparte acid
AN01105000 AN01583001		L-beta-aspartyl-L-serine
AN01383001 AN01757003		L-beta-aspartyl-L-threonine
AN00782000	C05947	L-erythro-4-Hydroxyglutamic acid
ED02071001	C22140	L-gamma-Glutamyl-(3R)-L-beta-ethynylserine
AN01130001	<u>C22140</u>	L-glycyl-L-hydroxyproline
AN02380000		L-phenylalanyl-L-hydroxyproline
AN02380000 AN00583005	C03618	L-threo-3-Methylaspartic acid
	<u>C03018</u>	
AN01876003		Leucyl-Hydroxyproline
AN01688001	602165	Leucyl-Proline
AN03196007	<u>C02165</u>	Leukotriene B4
AN05162000	<u>C02166</u>	Leukotriene C4
BM00344001	<u>C11918</u>	Maltol
AN04939000		Mesoporphyrin IX
PR03666000		Metanephrine O-glucuronide
PR03975000	600122	Metatonin N-glucuronide
AN00009000	<u>C00132</u>	Methanol
AN01971000		Methionyl-Threonine
AN01939000		Methionyl-Valine
AN00130004		Methoxyacetic acid
AN00396003		Mevalonolactone
AN00951000	<u>C01041</u>	Monodehydroascorbic acid
BM03948000	<u>C12221</u>	Myxochelin B
AN00744000	<u>C02728</u>	N(6)-Methyllysine
AN00738001	<u>C06442</u>	N(gamma)-Acetyldiaminobutyric acid
AN01171000	<u>C05933</u>	N(omega)-Hydroxyarginine
BM01257001	<u>C19715</u>	N,N-Dihydroxy-L-phenylalanine
BM00609000	<u>C20314</u>	N,N-Dihydroxy-L-valine
AN02555000	<u>C03406</u>	N-(L-Arginino)succinic acid
PR00561005		N-Acetyl-(S)-2-Aminobutanoic acid
PR01065002		N-Acetyl-2-Aminomuconate semialdehyde
PR01789001		N-Acetyl-2-Carboxy-2,3-dihydro-5,6-dihydroxyindol
PR01144002		N-Acetyl-2-Oxo-4-hydroxy-5-aminovaleric acid

NovaMT Library No.	External Identifier	Compound
PR01229010		N-Acetyl-3-Hydroxyanthranilic acid
PR02188000		N-Acetyl-4-(2-Amino-3-hydroxyphenyl)-2,4-
		dioxobutanoic acid
PR01949000		N-Acetyl-4-(2-Aminophenyl)-2,4-dioxobutanoic acid
TA02137001		N-Acetyl-5-Hydroxy-L-tryptophan
PR02604000		N-Acetyl-5-Hydroxy-N-formylkynurenine
PR02417003		N-Acetyl-6-(1'-Hydroxy-2'-oxopropyl)-tetrahydropterin
PR02417000		N-Acetyl-6-Lactoyl-5,6,7,8-tetrahydropterin
PR02392000		N-Acetyl-6-Pyruvoyltetrahydropterin
AN03398000	<u>C04016</u>	N-Acetyl-7-O-acetylneuraminic acid
AN03398001		N-Acetyl-9-O-acetylneuraminic acid
PR01006005		N-Acetyl-Anthranilic acid
PR00381000		N-Acetyl-Dehydroalanine
AN01234000		N-Acetyl-Dopamine
PR01789000		N-Acetyl-Dopaquinone
PR00189009		N-Acetyl-Ethanolamine
PR01970000		N-Acetyl-Formyl-5-hydroxykynurenamine
PR05241000		N-Acetyl-Glutathione disulfide
TA00926001		N-Acetyl-Hydroxyproline
PR01130004		N-Acetyl-Isoglutamine
PR00722000		N-Acetyl-L-2-Amino-3-oxobutanoic acid
PR01144003		N-Acetyl-L-4-Hydroxyglutamate semialdehyde
PR01646001		N-Acetyl-L-Adrenaline
TA02422000		N-Acetyl-L-Cystine
PR01766000		N-Acetyl-L-Dopachrome
PR00977002		N-Acetyl-L-Homocysteine
PR01449002		N-Acetyl-L-Noradrenaline
TA00708002		N-Acetyl-L-Proline
TA01623001		N-Acetyl-L-Tyrosine
TA01025001 TA01144004	C00624	N-Acetyl-L-glutamic acid
TA01144004 TA01130000	<u>C00024</u>	N-Acetyl-L-glutamine
PR01733000		N-Acetyl-N(omega)-Hydroxyarginine
PR01733000 PR01734001		N-Acetyl-Nonega)-Hydroxyarginne N-Acetyl-N-Methylserotonin
		N-Acetyl-N-Methylserotomin N-Acetyl-Sarcosine
PR00406011		
PR02392001		N-Acetyl-Sepiapterin
AN01013000		N-Acetyl-Tyramine
TA00938003	C01072	N-Acetyl-asparagine
AN00406005	<u>C01073</u> C02510	N-Acetyl-beta-alanine
TA01392000	<u>C03519</u>	N-Acetyl-phenylalanine
PR02058000		N-Acetyl-sn-Glycero-3-phosphoethanolamine
PR00926003	G 1 = 0 = 1	N-Acetyl-trans-3-Hydroxy-L-proline
AN03567000	<u>C17951</u>	N-Acetylbialaphos
AN00956000	<u>C02298</u>	N-Acetylindoxyl
AN02590000	<u>C02713</u>	N-Acetylmuramic acid
AN00400000	<u>C02714</u>	N-Acetylputrescine
AN01546000	<u>C00978</u>	N-Acetylserotonin
PR03861000		N-Acetylserotonin O-glucuronide
AN00380003		N-Acryloylglycine
AN00561002		N-Butyrylglycine
AN00419003	<u>C01043</u>	N-Carbamoylsarcosine
AN00189006	<u>C11735</u>	N-Ethylglycine
AN00734001	<u>C03409</u>	N-Formimino-L-aspartic acid
AN00938001	<u>C00439</u>	N-Formimino-L-glutamic acid
AN00824000	<u>C19872</u>	N-Formyl-4-amino-5-aminomethyl-2-methylpyrimidine
AN00952001	C01045	N-Formyl-L-glutamic acid
AN00978002	C03145	N-Formylmethionine
BM00587000	C20310	N-Hydroxy-L-isoleucine
BM01037000	C19712	N-Hydroxy-L-phenylalanine
BM01257000	<u>C03004</u>	N-Hydroxy-L-tyrosine
BM00433000	C20313	N-Hydroxy-L-valine
AN00725003	<u></u>	N-Isovaleroylglycine
TM00754001	C01046	N-Methyl-L-glutamic acid
AN00277000	<u>C01040</u>	N-Methyl-a-aminoisobutyric acid
AN00277000 AN00681000	C01210	N-Methylethanolamine phosphate
		• • • •
AN00337000 PR03583000	<u>C05127</u>	N-Methylhistamine
PR03583000		N-Methylserotonin O-glucuronide
AN02508000		N-Ribosylhistidine
TA01903000		N-acetyl-Tryptophan

NovaMT Library No.	External Identifier	Compound
AN01778000	<u>C02700</u>	N-formylkynurenine
AN02336005		N-gamma-Glutamyl-Glutamine
PR02197000		N2'-Acetyl-5'-Hydroxykynurenine
PR04468000		N2'-Acetyl-CMP-2-aminoethylphosphonate
PR02454001		N2-Acetyl-5-Phosphooxy-L-lysine
PR04468001		N2-Acetyl-CMP-2-aminoethylphosphonate
PR03487001		N2-Acetyl-Cysteinyldopa
AN02172003		N2-Acetyl-L-Cystathionine
PR01349003		N2-Acetyl-L-Hydroxylysine
AN03710000	<u>C20333</u>	N2-Citryl-N6-acetyl-N6-hydroxy-L-lysine
PR01612003		N3-Acetyl-5'-Hydroxykynurenamine
PR04121001		N3-Acetyl-S-Adenosyl-L-homocysteine
PR03877001		N3-Acetyl-S-Adenosylmethioninamine
PR00943004		N5-Acetyl-L-Ornithine
PR04121000		N6'-Acetyl-S-Adenosyl-L-homocysteine
PR03877000		N6'-Acetyl-S-Adenosylmethioninamine
AN01138000	C03793	N6,N6,N6-Trimethyl-L-lysine
AN00774000	C01028	N6-Hydroxy-L-lysine
AN02416001	001020	N6-Methyladenosine/N-Acetyl-6-(1'-Hydroxy-2'-
711102410001		oxopropyl)-tetrahydropterin
AN02121001		N6-beta-Aspartyl-Lysine
PR03487000		N7'-Acetyl-Cysteinyldopa
AN01117001	C01029	N7-Acetyl-Cysteinyldopa N8-Acetyl-spermidine
AN02207000	<u>C06469</u>	Neuraminic acid
	<u>C00469</u> C00253	Nicotinic acid
AN00318001		
BM03780000	<u>C17355</u>	Nocardicin G
AN02772000	<u>C01682</u>	Nopaline
AN03865000		Norcholic acid
ED02962000		Norfloxacin
AN02336000		Norophthalmic acid
AN00814003		Norsalsolinol
BM05032000	<u>C12473</u>	Novclobiocin 104
AN00754002	<u>C01077</u>	O-Acetyl-L-homoserine
AN00433003		O-Methyl-L-threonine
AN01087000	C01005	O-Phospho-L-serine
AN01560000	C01118	O-Succinyl-L-homoserine
AN02912000		Octadecanedioic acid
AN02541000	C21016	Ophthalmic acid
AN00414000	C00036	Oxaloacetic acid
AN01159000	C05379	Oxalosuccinic acid
AN01565000	C00864	Pantothenic acid
BM00966008	C06033	Parapyruvic acid
AN02406001	<u>C00035</u>	Phenylalanyl-Aspartic acid
AN02644001		Phenylalanyl-Methionine
AN02198001	000127	Phenylalanyl-Threonine
AN00619001	<u>C02137</u>	Phenylglyoxylic acid
AN00793004	<u>C00166</u>	Phenylpyruvic acid
AN02760000		Pimelylcarnitine
AN03880000	<u>C18044</u>	Pregnenolone sulfate
AN01654002	<u>C00254</u>	Prephenic acid
AN01860002		Prolyl-Gamma-glutamic acid
AN01860001		Prolyl-Glutamine
AN01684000		Prolyl-Hydroxyproline
AN01688002		Prolyl-Isoleucine
AN00406010		Propionylglycine
AN03167006	<u>C05954</u>	Prostaglandin B2
AN03196010		Prostaglandin C1(1-)
AN03167005	C05955	Prostaglandin C2
AN03427007	C00696	Prostaglandin D2
AN03427007	C00584	Prostaglandin E2
BM02625000	C00844	Prunasin
	<u>C200844</u> C20082	Prunasin Pseudaminic acid
AN03162000	<u>C20082</u>	
AN00745000	000124	Putreanine
AN00122000	<u>C00134</u>	Putrescine
AN00863000	<u>C00534</u>	Pyridoxamine
AN01932000	<u>C00647</u>	Pyridoxamine phosphate
PR01947002		Pyridoxine O-sulfate
AN01948000	C00627	Pyridoxine phosphate

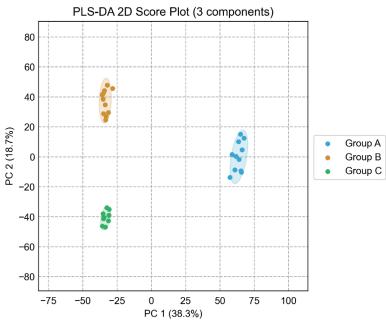
NovaMT Library No.	External Identifier	Compound
AN01599000	<u>C02587</u>	Pyrimidodiazepine
AN01157002		Pyrocatechol sulfate
AN02734000		Pyrogallol-2-O-glucuronide
BM00058000		Pyrrolidine
AN00596001	<u>C17268</u>	Pyruvophenone
BM00227001	<u>C01751</u>	Resorcinol
AN03521010	<u>C01850</u>	Rosmarinic acid
AN03771000	<u>C00021</u>	S-Adenosyl-L-homocysteine
AN03901000	<u>C00019</u>	S-Adenosyl-L-methionine
AN03446000	<u>C01137</u>	S-Adenosylmethioninamine
AN01786000		S-Cysteinosuccinic acid
AN04120000	C05526	S-Glutathionyl-L-cysteine
AN02206000	C03539	S-Ribosyl-L-homocysteine
AN01301000	C05824	S-Sulfo-L-cysteine
AN02354000	C00449	Saccharopine
BM00311002	C06202	Salicylaldehyde
	C06046	· · ·
AN02707000	<u>C00040</u>	Salidroside
AN01792000		Salsoline-1-carboxylic acid
AN01623000		Salsolinol 1-carboxylic acid
AN01544004		Serinyl-Hydroxyproline
PR03420000		Serotonin O-glucuronide
AN01563001		Seryl-Asparagine
AN01378000		Seryl-Threonine
AN02223000		Seryl-Tyrosine
AN01735000		Spermic acid 2
AN02358000	C16300	Stearidonic acid
AN03276000		Stearoylglycine
BM03284000	C01121	Streptidine 6-phosphate
AN01326001	01121	Symmetric dimethylarginine
	C09332	THF-L-glutamic acid
AN04966000		
BM01757000	<u>C20913</u>	Tabtoxin biosynthesis intermediate 3
BM01168004	<u>C20914</u>	Tabtoxin biosynthesis intermediate 4
BM02567000	<u>C20915</u>	Tabtoxin biosynthesis intermediate 5
BM01130002	<u>C20918</u>	Tabtoxinine-beta-lactam
BM01130003	<u>C20920</u>	Tabtoxinine-delta-lactam
BM00818004	<u>C06337</u>	Terephthalic acid
AN03582000		Tetrahydropentoxyline
AN01924001		Threoninyl-Glutamine
AN02050002		Threoninyl-Histidine
AN02198002		Threoninyl-Phenylalanine
AN01378001		Threoninyl-Serine
AN01589001		Threoninyl-Threonine
AN03641000	C05963	Thromboxane B2
AN03041000 AN01849000		
	<u>C00214</u>	Thymidine
AN00708001	01/000	Tiglylglycine
AN01465000	<u>C16309</u>	Traumatin
AN02725001		Tryptophyl-Proline
AN02887000	<u>C03033</u>	Tyramine O-glucuronide
AN01996003		Tyrosyl-Alanine
AN03079000		Tyrosyl-Methionine sulfoxide
AN02223001		Tyrosyl-Serine
AN02430001		Tyrosyl-Threonine
AN05145000	C20359	UDP-2-acetamido-3-amino-2,3-dideoxy-alpha-D-
		glucuronic acid
AN04992000	C00167	UDP-glucuronic acid
AN01730004	000107	Valyl-Aspartic acid
AN01711001		Valyl-Hydroxyproline
AN01714002		Valyl-Isoleucine
AN01892001		Valyl-Lysine
AN01432001		Vanilpyruvic acid
AN00536000		Vinylacetylglycine
BM03980004	<u>C17650</u>	Vulpecholic acid
AN02931009	C16679	all-trans-18-Hydroxyretinoic acid
BM00055001	C05714	alpha-Aminopropiononitrile
BM04110000	C17651	alpha-Phocaecholic acid
AN01534003	C05341	beta-Alanyl-Lysine
111010000000	000071	
AN01173000		beta-Damascenone


NovaMT Library No.	External Identifier	Compound
BM01315000	<u>C20581</u>	cis-(Homo)2-aconitic acid
BM01375004	<u>C14092</u>	cis-1,2-Dihydroxy-1,2-dihydro-8-carboxynaphthalene
BM00892002	<u>C06729</u>	cis-1,2-Dihydroxy-4-methylcyclohexa-3,5-diene-1-
		carboxylic acid
BM01105002	<u>C14112</u>	cis-2-Carboxycyclohexyl-acetic acid
AN01052012	<u>C12622</u>	cis-3-(3-Carboxyethenyl)-3,5-cyclohexadiene-1,2-diol
AN01079003	<u>C11588</u>	cis-3-(Carboxy-ethyl)-3,5-cyclo-hexadiene-1,2-diol
BM00499000	<u>C04431</u>	cis-4-Carboxymethylenebut-2-en-4-olide
EF00898003		cis-4-Decenoic acid
BM00252000	<u>C07091</u>	cis-Acetylacrylic acid
AN01019008		cis-Caffeic acid
AN04001000	<u>C00206</u>	dADP
BM00373003	<u>C05715</u>	gamma-Amino-gamma-cyanobutanoic acid
AN00189003	<u>C00334</u>	gamma-Aminobutyric acid
AN02758002		gamma-Glutamyl-Arginine
AN01346001		gamma-Glutamyl-Glycine
AN02608000		gamma-Glutamyl-Phenylalanine
AN01757008		gamma-Glutamyl-Serine
AN01936002		gamma-Glutamyl-Threonine
BM01281000	C06114	gamma-Glutamyl-beta-aminopropiononitrile
BM01857001	C05711	gamma-Glutamyl-beta-cyanoalanine
AN01516000	C15700	gamma-Glutamyl-gamma-aminobutyraldehyde
AN02339003		gamma-Glutamyllysine
BM02198000	C20926	gamma-Glutamyltyramine
BM00460000	C07211	m-Methylbenzoic acid
BM00630000	C06576	p-Cumic alcohol
AN01417001	C05596	p-Hydroxyphenylacetylglycine
AN00847001	C04548	p-Synephrine
BM00299003	C06758	p-Tolualdehyde
AN01496000	C01233	sn-Glycero-3-phosphoethanolamine
AN01019003	C12623	trans-2,3-Dihydroxycinnamic acid
AN00414002	C03548	trans-2,3-Epoxysuccinic acid
BM00652032	C11942	trans-2-Methyl-5-isopropylhexa-2,5-dienal

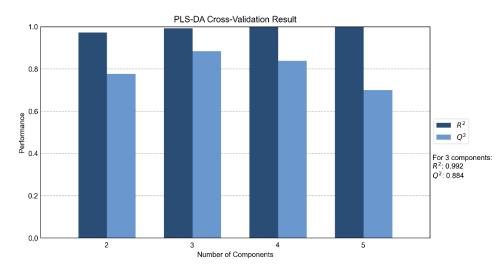

3.4 Multivariate Analysis

3.4.1 Comparison between 'Group A', 'Group B', and 'Group C' groups

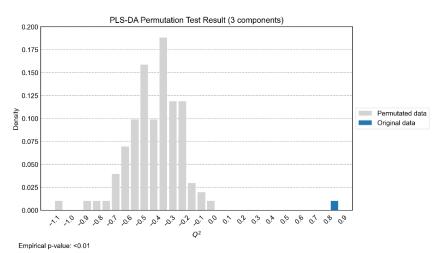
Principle component analysis (PCA) 2D scores plot (with QC) is shown below. .



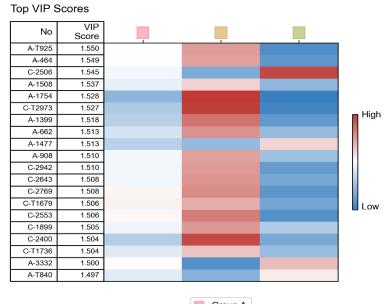
Principle component analysis (PCA) 2D scores plot (without QC) is shown below.



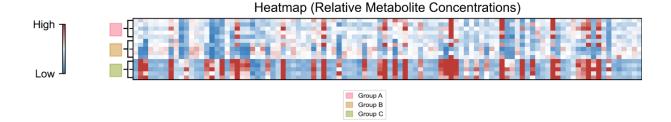
Partial least squares discriminant analysis (PLS-DA) scores plot (without QC) is below.

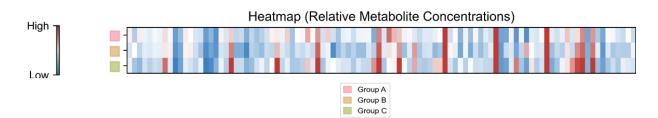


PLS-DA cross validation results are shown below (R²=1.000, Q²=0.294).

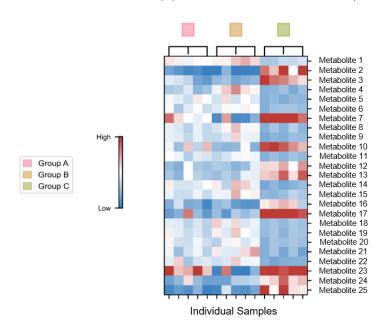


PLS-DA permutation test results are shown below. Empirical p-value: <0.01

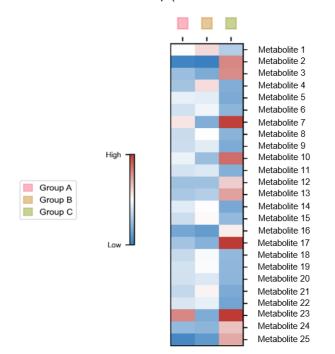




Heatmap (without QC) is shown below. Data for every sample is displayed, showing the top 100 high-confidence identified metabolites ranked by p-value.

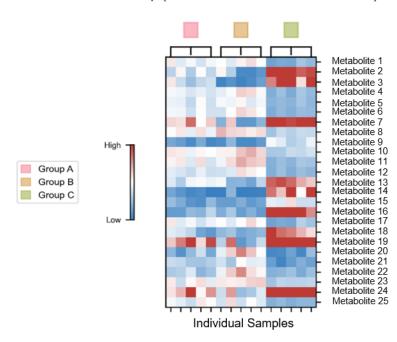


Heatmap (without QC) is shown below. Data for the average of each group is displayed, showing the top 100 high-confidence identified metabolites ranked by p-value.



Heatmap (without QC) is show below. Data for every sample is displayed, showing the top 25 Tier 1 and Tier 2 identified metabolites ranked by p-value.

Heatmap (Relative Metabolite Concentrations)


Heatmap (without QC) is shown below. Data for the average of each group is displayed, showing the top 25 Tier 1 and Tier 2 identified metabolites ranked by p-value.

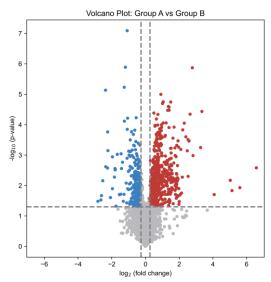
Heatmap (Relative Metabolite Concentrations)

Heatmap (without QC) is show below. Data for every sample is displayed, showing the top 25 Tier 1, Tier 2, and Tier 3 identified metabolites ranked by p-value.

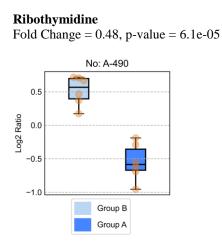
Heatmap (Relative Metabolite Concentrations)

Heatmap (without QC) is shown below. Data for the average of each group is displayed, showing the top 25 Tier 1, Tier 2, and Tier 3 identified metabolites ranked by p-value.

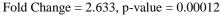
Heatmap (Relative Metabolite Concentrations)

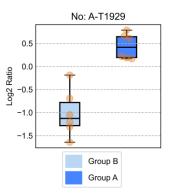

3.5 Univariate Analysis

3.5.1 Comparison between 'Group A' group and 'Group B' group


Volcano plot was constructed by plotting the fold change (FC) of each metabolite against p-value. The fold change was calculated as Mean(Group A) / Mean(Group B). The results of pathway/panel-related metabolites identified in tier 1 and tier 2 were shown in Supplemental Table 2.

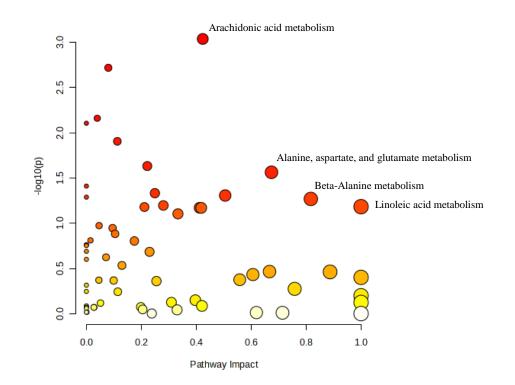
When using FC > 1.2 or < 0.83, p-value < 0.05, and q-value (or FDR-adjusted p-value) < 0.25 as criteria, the analysis showed that 1346 peak pairs with FC > 1.2, q-value < 0.25 and 1302 peak pairs with FC < 0.83, q-value < 0.25 (corresponding q-value threshold is 0.22).


Without considering FDR adjustment and using FC > 1.2 or < 0.83 and p-value < 0.05 as criteria, the analysis showed that 520 peak pairs with FC > 1.2, p-value < 0.05 (in red) and 333 peak pairs with FC < 0.83, p-value < 0.05 (in blue) (corresponding Storey's q-value threshold is 0.22). Among them, 67 peak pairs can be positively identified in tier 1 using CIL Library, 116 peak pairs can be high-confidence putative identified in tier 2 using LI Library and 600 peak pairs can be putatively identified in tier 3 using MCID library (Supplemental Table 3a).



Shown below are the box plots of two identified significantly changed metabolites in tier 1, working as examples of metabolite concentration changes.

Asparaginyl-Histidine



3.6 Pathway Analysis

3.6.1 Comparison between 'Group A' group and 'Group B' group (in Homo sapiens (KEGG) library)

Metabolites that were identified in tier 1 and tier 2 as high-confidence results were used for pathway analysis. The pathway analysis was performed using Global Test as enrichment analysis and Relative-betweeness Centrality as topology analysis in MetaboAnalyst (www.metaboanalyst.ca). The figure below shows the scatter plot of pathway analysis.

The table below shows the detailed information for each pathway.

Pathway Name	Total Cmpd	Hits	Raw p- value	Holm adjust p- value	FDR adjusted p-value	Impact
Arachidonic acid metabolism	44	15	0.000916	0.058622	0.058622	0.42364
Glycerophospholipid metabolism	36	4	0.001908	0.1202	0.061052	0.07982
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis	32	2	0.006901	0.42788	0.12533	0.03947
Ether lipid metabolism	20	1	0.007833	0.47783	0.12533	0
Glycolysis or Gluconeogenesis	26	4	0.012414	0.74487	0.1589	0.11262
Retinol metabolism	17	4	0.023302	1	0.24855	0.22164
Alanine, aspartate and glutamate metabolism	28	17	0.027319	1	0.24978	0.67388
Biosynthesis of unsaturated fatty acids	36	8	0.038829	1	0.25436	0
Pyruvate metabolism	23	7	0.04651	1	0.25436	0.24932
Arginine biosynthesis	14	9	0.049356	1	0.25436	0.50532
Nicotinate and nicotinamide metabolism	15	3	0.051462	1	0.25436	0
beta-Alanine metabolism	21	10	0.053847	1	0.25436	0.81717
Lysine degradation	30	10	0.063605	1	0.25436	0.28015
Linoleic acid metabolism	5	2	0.065575	1	0.25436	1
Pyrimidine metabolism	39	9	0.066143	1	0.25436	0.21118
Citrate cycle (TCA cycle)	20	8	0.067479	1	0.25436	0.41209
Histidine metabolism	16	6	0.067564	1	0.25436	0.41802
alpha-Linolenic acid metabolism	13	2	0.078695	1	0.2798	0.33333
Propanoate metabolism	22	6	0.10626	1	0.35792	0.04616
Pantothenate and CoA biosynthesis	20	9	0.11316	1	0.36211	0.09524
Sphingolipid metabolism	32	4	0.13111	1	0.39957	0.10444

Pathway Name	Total Cmpd	Hits	Raw p- value	Holm adjust p- value	FDR adjusted p-value	Impac
Fatty acid biosynthesis	47	5	0.15477	1	0.43462	0.0147
Butanoate metabolism	15	5	0.15714	1	0.43462	0.1746
Fatty acid elongation	39	1	0.17316	1	0.43462	0
Fatty acid degradation	39	1	0.17316	1	0.43462	0
Biotin metabolism	10	1	0.17656	1	0.43462	0
Nitrogen metabolism	6	1	0.20463	1	0.47348	0
Purine metabolism	70	12	0.20715	1	0.47348	0.2299
Valine, leucine and isoleucine degradation	40	8	0.23803	1	0.5253	0.0714
D-Amino acid metabolism	15	7	0.25069	1	0.5348	0
Inositol phosphate metabolism	30	2	0.29289	1	0.60468	0.1293
Vitamin B6 metabolism	9	4	0.34249	1	0.66971	0.6666
Arginine and proline metabolism	36	21	0.34532	1	0.66971	0.8872
Tryptophan metabolism	41	21	0.36934	1	0.69523	0.6062
Taurine and hypotaurine metabolism	8	6	0.39703	1	0.71616	1
Glyoxylate and dicarboxylate metabolism	32	11	0.42121	1	0.71616	0.5583
Ubiquinone and other terpenoid-quinone biosynthesis	19	4	0.42597	1	0.71616	0.0454
Folate biosynthesis	27	4	0.42964	1	0.71616	0.0992
Amino sugar and nucleotide sugar metabolism	42	9	0.43641	1	0.71616	0.2549
Selenocompound metabolism	20	1	0.48384	1	0.77415	0
Cysteine and methionine metabolism	33	18	0.53181	1	0.83015	0.7583
Drug metabolism - cytochrome P450	55	1	0.56781	1	0.85149	0
Terpenoid backbone biosynthesis	18	2	0.57209	1	0.85149	0.1142
Phosphonate and phosphinate metabolism	6	2	0.63356	1	0.92155	1
Glutathione metabolism	28	8	0.70944	1	0.99228	0.3965
One carbon pool by folate	26	9	0.74843	1	0.99228	0.309
Phenylalanine metabolism	8	8	0.75152	1	0.99228	1
Primary bile acid biosynthesis	46	6	0.76316	1	0.99228	0.0512
Starch and sucrose metabolism	18	1	0.82148	1	0.99228	0.420
Neomycin, kanamycin and gentamicin biosynthesis	2	1	0.82148	1	0.99228	0
Pentose phosphate pathway	23	1	0.82462	1	0.99228	ŏ
Galactose metabolism	27	5	0.84195	1	0.99228	0.1981
Thiamine metabolism	7	1	0.8513	1	0.99228	0.1901
Porphyrin metabolism	31	2	0.85146	1	0.99228	0.0279
Steroid hormone biosynthesis	87	3	0.85274	1	0.99228	0.0270
Fructose and mannose metabolism	20	3	0.87421	1	0.99831	0.0270
Pentose and glucuronate interconversions	19	3	0.89773	1	0.99831	0.2048
Glycerolipid metabolism	16	2	0.9076	1	0.99831	0.3302
Lipoic acid metabolism	28	2	0.96193	1	0.99831	0.001
Valine, leucine and isoleucine biosynthesis	28	7	0.96193	1	0.99831	0.001
Tyrosine metabolism	42	29	0.90384	1	0.99831	0.6189
Glycine, serine and threonine metabolism	33	29 16	0.97201	1	0.99831	0.0189
Ascorbate and aldarate metabolism	9	3	0.97738	1	0.99831	0.238
Phenylalanine, tyrosine and tryptophan biosynthesis	4	4	0.99502	1	0.99831	0.238

The profile suggested a perturbation in several pathways such as amino acid metabolism, and other pathways as summarized in the above table. The importance and biological functions of common metabolic pathways are listed in the references shown in the Appendix A in this report. The table that can be directly used in the Pathway Analysis Module in MetaboAnalyst (www.metaboanalyst.ca) was included with this report.

4 Conclusions

- 1) LC-MS data from 34 samples were processed. All data passed quality checks.
- 2) An average of 5707 ± 30 peak pairs per sample were detected.
- 3) Three-tier ID approach was used to perform metabolite identification. 5421 peak pairs were positively identified or putatively matched. Among them, 378 peak pairs were positively identified in tier 1 (CIL Library); 893 peak pairs were putatively identified with high-confidence in tier 2 (LI Library); 1124, 2311, and 715 peak pairs were matched in the zero-, one-, and two-reaction libraries, respectively.
- 4) Principal component analysis and partial least squares discriminant analysis as multivariate analysis tool, and volcano plot as univariate analysis tool, were used to analyze and view the data set.
- 5) Pathway analysis was performed to investigate the pathway perturbations.

Pathway Name	Biological Roles	References
Glycolysis and	Anaerobic component of cellular respiration that occurs in the	[1] Wünschiers et al. 2012
Gluconeogenesis	cytosol of cells. Highly regulated pathway that catabolizes glucose and other hexoses to produce energy directly as ATP, and indirectly as pyruvate and NADH. Gluconeogenesis allows non-carbohydrate metabolizes to explorise humans [1]	[2] Ganapathy-Kanniappan 2018
	 metabolites to replenish glucose [1] In the "Warburg effect," glycolysis is dysregulated in tumor cells despite aerobic conditions, displacing glucose from healthy cells [2] 	
Tricarboxylic acid cycle (Krebs cycle, citrate cycle)	Aerobic component of cellular respiration that in eukaryotes, occurs in the mitochondrial matrices of cells. Plays a central catabolic role by oxidizing acetyl-CoA derived from carbohydrate, fatty acid, and	[1] Wünschiers et al. 2012[3] Williams and O'Neill 2018
	 amino acid sources to produce energy directly as ATP and indirectly as oxidative phosphorylation substrates NADH and FADH₂ [1] In immune cells, functions in anti-inflammatory signalling via itaconate production from cis-aconitate [3] 	
Pentose phosphate pathway	Pathway branching from glycolysis that in the oxidative phase, produces NADPH, an anabolic cofactor that functions in fatty acid,	[1] Wünschiers et al. 2012
	steroid, and nucleotide biosynthesis, and the light reactions in plants [4]. The non-oxidative phase notably produces ribose-5-phosphate, the precursor to nucleic acids [1, 4]	[4] Ge et al. 2020 [5] Riganti et al. 2012
	 5-30% Of glucose is directed here, with higher rates occurring in erythrocytes and lipid-producing tissues [5] Ameliorates oxidative stress via NADPH, which reduces glutathione into its antioxidant form [1] 	
Pentose and glucuronate interconversions	 Helps form the extracellular matrix via production of glucuronate, a component of proteoglycans [1] In plants, helps form cell walls via production of pentoses D-xylose and L-arabinose [1] 	[1] Wünschiers et al. 2012
Fructose and mannose metabolism	Provides substrates for energy production in glycolysis via conversions to glyceraldehyde-3-phosphate [1]	[1] Wünschiers et al. 2012
	• Unregulated fructose metabolism in the liver expends ATP and increases the by-product uric acid as hepatofructokinase	[6] Helsley et al. 2020
	 produces fructose-1-phosphate [6] Produces GDP mannose, a precursor to the N-glycans that facilitate protein folding [7] 	[7] Sharma et al. 2014
Galactose metabolism	Provides substrate for energy production in glycolysis via conversion to glucose-6-phosphate [1]	[1] Wünschiers et al. 2012
Ascorbate and aldarate	Inhibit glycolysis if galactose-1-phosphate accumulates [8]	[8] Liu et al. 2000 [1] Wünschiers 2012
metabolism	In plants and some other organisms, allows for the biosynthesis of ascorbate (vitamin C), a potent antioxidant [1]	
Fatty acid biosynthesis	Use of acetyl-CoA as a principal substrate for the synthesis of fatty acids eventually involved in cell structure, energy storage, and signalling [1, 9]	[1] Wünschiers 2012[9] de Carvalho and Caramujo
	 Fatty acids form cell membranes as they are incorporated into the structures of phospholipids, sphingolipids, 	2018
	 phosphosphingolipids, and gangliosides [9] Fatty acids are energy storage molecules that after being 	[10] Papackova and Cahova 2015
	converted to fatty acyl-CoA, undergo beta-oxidation to yield aerobic respiration substrates FADH ₂ , NADH, and acetyl-CoA [1, 9]	
	 Fatty acids function as signal transduction molecules that help regulate metabolism [10] 	
Fatty acid elongation	 Elongation of fatty acid acyl chains two carbons at a time, conferring new functional properties [9, 11] Can produce myristic acid (1-tetradecanoic acid), an 	[9] de Carvalho and Caramujo 2018
	 Can produce myristic acid (1-tetradecanoic acid), an intracellular signalling molecule, from shorter fatty acids [12] Can produce long-chain fatty acids that in plants, are used to 	[11] Jump 2009
	synthesize protective structures [15]	[12] Farazi et al. 2001
Fatty acid degradation	Involves beta-oxidation. Shortening of fatty acid acyl chains two	[15] Mazurek et al. 2017 [1] Wünschiers 2012
	 carbons at a time, producing the aerobic respiration substrates FADH₂, NADH, and acetyl-CoA [1, 9] Helps meet the energy demands of cardiac and skeletal muscle, which require the high ATP yield of aerobic respiration [1, 13] 	[9] de Carvalho and Caramujo 2018

5 Appendix A. Biological Functions of Common Metabolic Pathways

Pathway Name	Biological Roles	References
	Imbalance with fatty acid uptake by muscles results in the accumulation of intramuscular lipids, which can cause localized	[13] Zhang et al. 2010
	insulin resistance [13]	
Synthesis and degradation of tetone bodies	Pathway branching from fatty acid degradation that occurs mainly in hepatocytes during prolonged periods of fasting. Ketone bodies	[1] Wünschiers 2012
	acetoacetate, beta-hydroxybutyrate, and acetone are water-soluble compounds that provide energy to the brain and other organs by	[14] Newman and Verdin 2014
	 converting to aerobic respiration substrate acetyl-CoA [1, 14] Meets energy demands when carbohydrates are not available as 	
	energy sources via glycolysis. Instead, adipocytes provide fatty	
	 acids that are catabolized to form ketone bodies [1, 14] Beta-hydroxybutyrate acts as a signalling molecule that can 	
	promote gene expression by inhibiting class I HDACs [14]	
Cutin, suberine and wax piosynthesis	Biosynthesis of fatty acid polymers integral to the structure of specialized tissues in plants and other organisms that function in	[15] Mazurek et al. 2017
nosynthesis	protection from the environment [15, 16, 17]	[16] Graça 2015
	 Cutin aids in protection as it forms the cell wall structures in the plant epidermis that create an extracellular cuticle layer [15] 	[17] Patel et al. 2001
	 Suberin aids in stem protection and wound sealing as it forms 	[17] Fater et al. 2001
	the cell wall structures of the periderm [16]	
	 Wax esters have diverse functions such as water retention and buoyancy in plants and arthropods [17] 	
Steroid Biosynthesis	Biosynthesis of steroids from the terpenoid precursor squalene [1].	[1] Wünschiers 2012
lerona Diosynaicons	Produces cholesterol, which mediates membrane fluidity and	
	permeability, and is a substrate for bile acid and steroid hormone biosynthesis [1, 18]	[18] Yang et al. 2016
	• In the alternative pathway of plants, squalene converts to	[19] Li et al. 2021
	cycloartenol, which gives rise to the brassinosteroid phytohormones involved in growth, development, and abiotic	
	stress responses [19]	
Primary bile acid biosynthesis	Cholesterol-derived biosynthesis of bile acids, the major component	[1] Wünschiers 2012
	of liver bile that aids in the digestion of lipids via emulsification. The classic (neutral) pathway occurs in hepatocytes while the alternative	[20] Vaz and Ferdinandusse 201
	(acidic) pathway occurs in all tissues [1]	
	 Bile acids function in toxin secretion, cholesterol homeostasis, and metabolic signalling [1, 20] 	
Jbiquinone and other	Biosynthesis of quinone cofactors involved in energy production, or	[1] Wünschiers 2012
erpenoid-quinone biosynthesis	 injury prevention and repair [1, 21] Ubiquinone facilitates ATP production as an electron carrier in 	[21] Yamaguchi et al. 2003
	the electron transport chain of aerobic respiration [1]	
	 Menaquinone increases bone density by inhibiting osteoclast activity [21] 	
	• Phylloquinone (vitamin K ₁) is a cofactor involved in blood	
Steroid hormone biosynthesis	coagulation [1] Cholesterol-derived biosynthesis of corticosteroids (glucocorticoids	[1] Wünschiers 2012
steroid normone biosynthesis	and mineralocorticoids) and sex steroids (androgens, estrogens, and	[1] wullsemers 2012
	progestogens) involved in homeostasis and sexual development [1,	[22] Holst et al. 2004
	Glucocorticoids such as cortisol diversely affect metabolism by	
	increasing blood glucose, hepatic protein synthesis, and fatty	
	acid catabolism, often in response to stress. They also suppress the immune system and inflammation [1, 22]	
	 Mineralocorticoids such as aldosterone function to regulate salt 	
	and water balance by promoting sodium reabsorption at the	
	kidneys. This causes water reabsorption, and thus an increase in blood volume and pressure [22]	
	blood volume and pressure [22]Androgens such as testosterone develop male secondary sexual	
	characteristics and masculinizing features in general [22]	
	 Estrogens such as estradiol develop female primary and secondary sexual characteristics, and promote fat anabolism [1, 	
	22]	
	• Progestogens prepare the body for pregnancy by thickening the uterine lining and developing the breasts for lactation [22]	
Purine metabolism	Biosynthesis, degradation, and interconversions of purines essential to the structure of DNA and RNA, the production of energy, and	[1] Wünschiers 2012

Pathway Name	Biological Roles	References
	Production of purine derivatives adenine and guanine,	
	nucleobases used in DNA and RNA [1]Production of the adenosine and guanosine phosphates, which	
	act as crucial metabolic cofactors and signalling molecules [1]	
	 Aberrations in purine metabolism are linked to cancers, with 	
	heightened inosine to adenosine ratios observed in tumor cells	
	[23]	
Caffeine metabolism	Metabolism of the central nervous system stimulant caffeine, mainly	[1] Wünschiers 2012
	 in hepatocytes [24] Stimulant effects of caffeine diminish as it is metabolized into 	[24] Cornelis et al. 2016
	paraxanthine, its major product [1, 24]	[24] Comens et al. 2010
	• Two of the direct metabolic products of caffeine, theobromine	[25] Barcelos et al. 2020
	and theophylline, are stimulants that are further metabolized [1,	
	 Anti-inflammatory and lipolytic effects as caffeine and its related metabolites elevate cAMP levels [25] 	
Pyrimidine metabolism	Biosynthesis, degradation, and interconversions of pyrimidines	[1] Wünschiers 2012
	essential to the structure of DNA, RNA, and nucleotide sugars	
	involved in metabolism as a whole [1, 26]	[26] Löffler et al. 2005
	Production of pyrimidine derivatives cytosine, thymine, and	
	 uracil, nucleobases used in DNA and RNA [1] Production of glycosylating nucleotide sugars that facilitate 	
	 Production of glycosylating nucleotide sugars that facilitate protein and lipid modification, biosynthesis, and detoxifications 	
Glutathione metabolism	Production and replenishment of reduced-form glutathione, an	[1] Wünschiers 2012
	antioxidant and cytoprotective metabolite [1]	
	Hemolytic anemia may result from a surplus of oxidized-form	
Arginine biosynthesis	glutathione in erythrocytes, due to inadequate NADPH [1] Biosynthesis of the proteinogenic amino acid arginine, mainly via the	[1] Wünschiers 2012
Arginine biosynthesis	intestinal-renal axis [1]	[1] wunschiefs 2012
	Involves the urea cycle, which eliminates toxic ammonia	[27] Rodriguez et al. 2017
	liberated from amino acid catabolism by converting it to urea	-
	for excretion in urine [1]	
	 Arginine is a conditionally essential amino acid as biosynthesis may be inadequate in those with cancer or other pathologies 	
	[27]	
Alanine, aspartate and	The alanine cycle allows for the elimination of toxic ammonia	[1] Wünschiers 2012
glutamate metabolism	and the replenishment of glucose in muscles through alanine	
	interconversion with pyruvate, and transport between skeletal	[28] Felig 1973
	 muscle and the liver [1, 28] Aspartate can be metabolized into signalling molecules such as 	[29] Alkan et al. 2018
	 Aspartate can be metabolized into signalling molecules such as N-acetyl-aspartate and beta-alanine [1] 	
	 Glutamate and its decarboxylation product gamma- 	[30] Walker and Donk 2015
	aminobutyric acid (GABA) are excitatory and inhibitory	
	neurotransmitters, respectively, that modulate the central	
	 nervous system [1] Aspartate and glutamate metabolism promote cell proliferation 	
	by contributing to the production of purines and pyrimidines	
	needed to make DNA and RNA [1, 29, 30]	
	Aspartate metabolizes into the proteinogenic amino acids	
	glycine, serine, threonine, lysine, and cysteine. Glutamate, as a	
	productive nitrogen donor, also aids in the biosynthesis of proteinogenic amino acids [1, 29, 30]	
Glycine, serine and threonine	 Drives the folate cycle, which promotes DNA and RNA 	[1] Wünschiers 2012
metabolism	biosynthesis, through the conversion of serine and glycine.	
	Along with the methionine cycle, which promotes purine and	[31] Razak et al. 2017
	polyamine biosynthesis, and methylation reactions, forms "one-	[20] Warra et al. 2012
	carbon metabolism" needed for cell proliferation [1, 32, 34]	[32] Wang et al. 2013
	• Eccential to mansher	
	• Essential to membrane synthesis as serine is a precursor to ceramides glycerophospholipids and sphingosines [1]	
	ceramides, glycerophospholipids, and sphingosines [1]	
	ceramides, glycerophospholipids, and sphingosines [1]	
	 ceramides, glycerophospholipids, and sphingosines [1] Helps maintain blood-glucose levels as serine is mainly catabolized to pyruvate, the principal substrate for gluconeogenesis [1] 	
	 ceramides, glycerophospholipids, and sphingosines [1] Helps maintain blood-glucose levels as serine is mainly catabolized to pyruvate, the principal substrate for 	

Pathway Name	Biological Roles	References
	 Exhibits anti-inflammatory and cytoprotective effects by contributing to glutathione production and decreasing pro- apoptotic events [31, 32] 	
Cysteine and methionine metabolism	 Links with the folate cycle, which promotes RNA and DNA biosynthesis, to form "one-carbon metabolism" needed for cell 	[1] Wünschiers 2012
neutonsin	proliferation [1, 33, 34]	[33] Affronti et al. 2020
	Methionine converts to S-Adenosyl methionine (SAM), a methylating cofactor involved in polyamine biosynthesis and	[34] Sanderson et al. 2019
	methylation reactions. The methionine cycle and methionine salvage regenerate methionine from SAM reactions [1, 33, 34]	[35] Serpa 2020
	• Improves the digestion of lipids as cysteine is a substrate for the biosynthesis of taurine, a bile acid conjugation partner [1]	
	Helps maintain blood-glucose levels as cysteine catabolizes to	
	pyruvate and favours its entry to gluconeogenesis over the TCA cycle or fatty acid synthesis [1, 35]	
	 Reduces inflammation as cysteine is a substrate for glutathione biosynthesis [1, 35] 	
Valine, leucine and isoleucine degradation	Regulates leucine and isoleucine levels, which are positively	[1] Wünschiers 2012
degradation	 correlated with insulin resistance [36] Improves muscle performance and hypertrophy by stimulating 	[36] Zhang et al. 2017
	protein synthesis through cell signalling (primarily by leucine), and inhibiting proteolysis (primarily by branched-chained keto	[37] Holeček 2018
	acids and beta-hydroxy-beta-methylbutyrate) [37]	
	 Contributes to energy production and lipid biosynthesis, as valine, leucine, and isoleucine catabolize into CoA substrates 	
	[1, 37]Leucine contributes to energy production in a fasted state by	
	catabolizing to aerobic respiration substrate acetyl-CoA [1]	
Valine, leucine and isoleucine biosynthesis	Non-mammalian biosynthesis of the branched-chain proteinogenic amino acids from pyruvate and threonine [1]	[1] Wünschiers 2012
Lysine biosynthesis	Non-mammalian biosynthesis of the proteinogenic amino acid lysine via two mutually exclusive pathways [1, 38]	[1] Wünschiers 2012
	• In plants, bacteria, and lower fungi, the diaminopimelate (DAP)	[38] Xu et al. 2006
	pathway occurs, whereby aspartate is a precursor to lysine and DAP. In bacteria, these are incorporated into cell walls [1, 38]	
	 In higher fungi and euglenoids, the alpha-aminoadipate (AAA) pathway occurs, whereby 2-oxoglutarate is the precursor to 	
	lysine [1, 32]	
Lysine degradation	 Aids in fatty acid metabolism by producing carnitine, which shuttles fatty acids to the mitochondria for beta-oxidation [1] 	[1] Wünschiers 2012
	• Contributes to energy production in a fasted state by producing	
Arginine and proline	 aerobic respiration substrate acetyl-CoA [1] Production of nitric oxide (NO), a signalling molecule, from 	[1] Wünschiers 2012
metabolism	arginine. NO promotes vasodilation, cardiac muscle relaxation, and phagocytic immunity [1, 39, 40]	[39] Ziolo et al. 2008
	Production of urea cycle substrates ornithine and citrulline,	
	which enable the conversion of toxic ammonia to urea for excretion in urine [1]	[40] Gogoi et al. 2016
	 Promotes muscle performance as arginine aids in the biosynthesis of creatine and thus phosphocreatine, which 	[41] Paddon-Jones et al. 2004
	regenerates muscle ATP [1, 41]	[42] Tanner et al. 2019
	 Enables cell proliferation via production of the polyamines spermidine and spermine, growth factors that stabilize DNA [1] 	
	Proline cycling increases levels of reactive oxygen species,	
	oxidative phosphorylation, and biomass precursors, implicating it in tumorigenesis and metastasis [42]	
Histidine metabolism	 Mainly results in the production of glutamate, which promotes neural functioning, cell proliferation, and the production of 	[1] Wünschiers 2012
	other amino acids [1, 43]	[43] Holeček 2020
	 Production of histamine in mast and tissue cells in response to allergens, causing vasodilation and bronchoconstriction. 	[44] Mendelson 2008
	Histamine also functions as a homeostatic neurotransmitter and aids in digestion by stimulating gastric HCl secretion [1, 43]	[45] Brosnan 2020
	Exhibits anti-inflammatory and cytoprotective effects via	
	production of carnosine, which scavenges free radicals and decreases protein glycation. This occurs mostly in skeletal	
	muscle [1, 44]	

Pathway Name	Biological Roles	References
	Ameliorates DNA damage caused by UV radiation via	
T ' 11'	production of urocanate in the skin [45]	[1] W/ 1: 0010
Tyrosine metabolism	Production of the catecholamines and thyroid hormones that are mained for attend and an and an and the second se	[1] Wünschiers 2012
	 crucial for stress responses and overall homeostasis [1] In melanocytes, produces eumelanins responsible for skin 	[46] Schenck and Maeda 2018
	pigmentation [1]	[40] Schenek and Macda 2010
	• Exhibits anti-inflammatory effects through the production of	[47] Turunen et al. 2004
	antioxidants such as tocopherols and other anti-inflammatory	
	compounds [46]	
	Contributes to energy production by forming the 4-	
	hydroxybenzoate structure of coenzyme Q10 [47]	
	 In plants, branches to phenolic secondary metabolic pathways involved in defense and pigmentation [46] 	
Phenylalanine metabolism	 Mainly results in the production of tyrosine and its metabolic 	[1] Wünschiers 2012
i neuylaianne metabolism	 Mainly results in the production of tyrosine and its metabolic products [1] 	
	 Aberrant phenylalanine metabolism due to phenylketonuria, a 	[48] Tohge et al. 2013
	hereditary disorder, can cause a buildup of phenylpyruvate and	_
	phenyllactate if dietary phenylalanine is too high. This impairs	
	neuronal development [1]	
	• In plants, branches to phenolic secondary metabolic pathways	
Tryptophan metabolism	 involved in defense and pigmentation [48] Production of serotonin, a neurotransmitter that functions in the 	[1] Wünschiers 2012
rryptophan metabolism	 Production of serotonin, a neurotransmitter that functions in the regulation of mood, blood clotting, and smooth muscle in the 	[1] wunschiefs 2012
	circulatory and digestive systems [1, 49]	[49] Jonnakuty and Gragnoli
	 Production of melatonin, a hormone that functions in the 	2008
	regulation of the sleep-wake cycle, blood pressure, the immune	
	system, and other physiological functions [1, 50]	[50] Pandi-Perumal et al. 2006
	Neurological effects via the kynurenine pathway, which yields	[51] Kadain et al. 2020
	compounds that affect glutamatergic neurotransmission [51]	[51] Kadriu et al. 2020
	 In plants, produces the phytohormone indole acetate (auxin), which promotes growth [1] 	
Phenylalanine, tyrosine and	Non-mammalian biosynthesis of the aromatic proteinogenic amino	[1] Wünschiers 2012
tryptophan biosynthesis	acids via the shikimate pathway. Mammalian tyrosine biosynthesis is	[1] Wunsemers 2012
	derived from ingested phenylalanine [1]	[52] Parthasarathy et al. 2018
	In plants, the shikimate pathway branches to secondary	-
	metabolic pathways that produce folates (B vitamins),	
1 / 41 * / 1 1*	pigments, and defense compounds [1, 52]	[1] W. 1: 2012
beta-Alanine metabolism	Exhibits anti-inflammatory and cytoprotective effects via	[1] Wünschiers 2012
	production of carnosine, which scavenges free radicals and decreases protein glycation. This occurs mostly in skeletal	[44] Mendelson 2008
	muscle, where beta-Alanine is the rate-limiting precursor [1,	
	44]	[53] Parthasarathy et al. 2019
	Contributes to energy production and lipid biosynthesis via	
	production of CoA substrates [1]	
	• In plants, involved in defense against environmental stressors	
Tauning and have to be	[53]	[1] Wännehing 2012
Taurine and hypotaurine metabolism	 Aids in the digestion of lipids as taurine conjugates with bile acids to form bile salts, which emulsify lipids [1] 	[1] Wünschiers 2012
metadonsm	 Ameliorates oxidative stress as taurine decreases the 	[54] Jong et al. 2011
	mitochondrial production of superoxide radicals at the	[o ·] vong et al 2011
	respiratory chain [54]	
D-Glutamine and D-glutamate	Can increase oxidative stress, as D-glutamate inhibits the	[1] Wünschiers 2012
metabolism	production of potent antioxidant glutathione [1, 55]	
	• In bacteria, helps form the peptidoglycan cell wall [56]	[55] Ariyoshi et al. 2017
		[56] Aliashkewich et al. 2019
D-Arginine and D-ornithine	In bacteria, helps form the peptidoglycan cell wall [56]	[56] Aliashkevich et al. 2018 [56] Aliashkevich et al. 2018
metabolism	• In bacteria, helps form the peptidoglycan cell wall [56]	
D-Alanine metabolism	Neurological effects as D-alanine binds to NMDA receptors	[57] Kiriyama and Nochi 2016
	[57]	
	• In bacteria, helps form the peptidoglycan cell wall [56]	
Geraniol degradation	Reduces cholesterol and isoprenoid biosynthesis by inhibiting	[58] Polo and De Bravo 2006
	the production of precursor mevalonate. This slows	
	proliferation by decreasing the isoprenoid post-translational	[59] Babukumar et al. 2017
	modifications of proteins utilized for cell growth [58]	

Pathway Name	Biological Roles	References
	 Geraniol supports glucose homeostasis by altering glycolytic and gluconeogenic enzyme activity in cases of insulin hypoactivity [59] 	
Monobactam biosynthesis	Bacterial biosynthesis of monocyclic beta-lactam antibiotics [60]	[60] Sykes and Bonner 1985
	 Antibiotic activities of monobactams are weak against gram- 	
	positive bacteria [60]	[61] Li et al. 2017
	Monobactams are not cleaved by metallo-beta-lactamases, best visit and an extension of the sector of the	
	bacterial enzymes that confer broad-spectrum antibiotic resistance [61]	
Carbapenem biosynthesis	Bacterial biosynthesis of carbapenem beta-lactam antibiotics [62]	[62] Coulthurst et al. 2005
	Carbapenems are not cleaved by extended spectrum beta-	
	lactamases, bacterial enzymes that confer antibiotic resistance to penicillins and celphalosporins [62]	
	 Carbapenem thienamycin is unstable and quickly metabolized 	
	by the dihydropeptidase enzyme in humans [62]	
Starch and sucrose metabolism	Dietary starch and sucrose are catabolized into simpler	[1] Wünschiers 2012
	 carbohydrates for energy production via glycolysis [1] In plants, starch is synthesized from glucose polymers 	[63] Skryhan et al. 2018
	amylopectin and amylose for energy storage. Metabolism is	
	tightly regulated to provide timely energy for development,	[64] Lemoine 2000
	nocturnal growth, and stress responses [63]	
	 In plants, sucrose is a transport sugar that is synthesized at photosynthetic organs and translocated to non-photosynthetic 	
	organs for energy storage, conversion to starch, and/or	
	metabolism [1, 64]	
	• In plants, produces cellulose which is essential to cell wall	
Amino sugar and nucleotide	integrity [1] Biosynthesis, interconversions, and polymerizations of sugar	[1] Wünschiers 2012
sugar metabolism	derivatives that confer function to macromolecules, and play a role in	
-	carbohydrate and glycoconjugate formation [1, 65, 66]	[65] Mikkola 2020
	Yields UDP-N-acetylglucosamine and UDP-N-	[(c) Shout the ord Milanoite 2016
	acetylgalactosamine, glycosyl donors that help produce glycoproteins and glycolipids imperative to molecule	[66] Skarbek and Milewska 2016
	activation, cell-cell interactions, and membrane functionality	
	[1, 66]	
	• Invertebrates, fungi, and algae polymerize N-acetylglucosamine	
	to form chitin, which composes the structure of exoskeletons and cell walls [1, 66]	
Glycerolipid metabolism	Production, mainly by adipocytes, of energy-storing	[1] Wünschiers 2012
	triacylglycerols from products of sugar metabolism.	
	Triacylglycerols form intracellular lipid-regulating droplets and are the main component of adipose tissue [1]	
	 Helps regulate glucose levels via metabolic flux between 	
	gluconeogenesis and triacylglycerol production. Adipose tissue	
	liberates glycerol and fatty acids to muscle and liver tissue for	
Glycerophospholipid	 glucose or energy production via beta-oxidation [1] Production of various glycerophospholipids, the main structural 	[1] Wünschiers 2012
metabolism	component of cell membranes [1]	
	• Glycerophospholipid properties such as head group, tail length,	[67] Farooqui et al. 2007
	and tail saturation affect the topography and fluidity of cell membranes they form. This influences protein integration,	
	transport, fusion, and other membrane activities [67]	
	 Helps facilitate cellular responses by yielding diacylglycerol 	
	and inositol phosphates, second messengers involved in signal	
Inositol phosphate metabolism	 transduction, from phosphatidylinositol [1, 67] Inositol phosphates are second messengers that facilitate signal 	[1] Wünschiers 2012
mositor phosphate metabolism	 Inositol phosphates are second messengers that facilitate signal transduction by regulating the intracellular release of calcium 	[1] wunschiefs 2012
	[1]	[68] Croze and Soulage 2013
	Deficiencies in myo-inositol are linked to diabetes	
Arachidonic acid metabolism	 complications in nerve, kidney, and eye tissues [68] Production of prostaglandins and other eicosanoids that 	[69] Turman and Marnett 2010
r nacinatine acia inclationisii	• Froduction of prostagiandins and other elecosations that function in circulatory, respiratory, and digestive system	[07] Furman and Marnett 2010
	regulation, immune cell activation, and neural transmission [69]	[70] Duroudier et al. 2009
		[71] Chandrasekharan and
		Sharma-Walia 2015

Pathway Name	Biological Roles	References
	 Mediates inflammation via production of leukotrienes and lipoxins. Leukotrienes promote and maintain inflammation, while lipoxins reduce inflammation by stimulating anti- inflammatory, and inhibiting pro-inflammatory, signalling pathways [70, 71] 	
Linoleic acid metabolism	 Supports neuronal cell integrity via production of dihomo- gamma-linolenic acid, a membrane phospholipid component 	[72] Brownlee et al. 2016
	[72]Production of signalling molecules such as 13(S)-HODE that	[73] Whelan 2013
	activate receptors involved in lipid metabolism and other physiological functions [73, 74]	[74] Nagy et al. 1998
alpha-Linolenic acid metabolism	 In plants, produces jasmonic acids, a class of phytohormones involved in growth regulation and defense against biotic and abiotic environmental stressors [75] 	[75] Pirbalouti et al. 2014
Sphingolipid metabolism	Biosynthesis, degradation, and interconversions of sphingolipids, a class of lipids with sphingosine backbones that contribute to	[76] Gault et al. 2010
	 membrane structure and cell signalling [76, 77] Membrane component sphingomyelin is necessary for the 	[77] Rao et al. 2013
	 survival of mammalian cells [76] Accumulation of proapoptotic ceramides due to sphingomyelinase overactivity contributes to the pathogenesis of type 2 diabetes mellitus and Alzheimer's disease by decreasing insulin sensitivity and promoting neuronal death, respectively [77] 	[78] Ogretmen 2018
	 Mitigates or enhances tumorigenesis depending on the metabolic flux between ceramides (anti-proliferative metabolites) and sphingomyelin, glucosylceramide, and sphingosine-1-phosphate (pro-proliferative metabolites) [78] 	
Pyruvate metabolism	 Biosynthesis of pyruvate and its oxidative decarboxylation to the central metabolic substrate acetyl-CoA under aerobic conditions, and reduction to fermentation products under anaerobic conditions [1] Links carbohydrate, lipid, and amino acid metabolism by providing substrates for the biosynthesis of glucose, fatty acids, ketone bodies, and amino acids [1] Meets energy demands under aerobic conditions via production of tricarboxylic acid cycle substrates acetyl-CoA and oxaloacetate [1] Meets energy demands under anaerobic conditions via the fermentation pathways, which replenish glycolysis cofactor NAD+ [1] 	[1] Wünschiers 2012
Glyoxylate and dicarboxylate metabolism	 Pathway in plants, bacteria, insects, and vertebrates that resembles the tricarboxylic acid cycle. In the glyoxylate cycle, fatty acid-derived acetyl-CoA combines with oxaloacetate to generate succinate for entry into gluconeogenesis, and malate for replenishment of oxaloacetate to restart the cycle [1] In photosynthetic plants, supports glucose biosynthesis through energy-costly photorespiration. This replenishes Calvin cycle intermediate 3-phospho-D-glycerate from the phosphoglycolate by-product [1] In bacteria, functions in acetate consumption as acetate is converted to acetyl-CoA [1] 	[1] Wünschiers 2012

REFERENCES

- Wünschiers R, Jahn M, Jahn D, Schomburg I, Peifer S, Heinzle E, Burtscher H, Garbe J, Steen A, Schobert M, et al. 2012. Metabolism. In: Michal G, Schomburg D, editors. Biochemical pathways: an atlas of biochemistry and molecular biology. 2nd ed. Hoboken (NJ): John Wiley & Sons, Inc. p. 37-209. doi:10.1002/9781118657072.
- 2. Ganapathy-Kanniappan S. 2018. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Critical Reviews in Biochemistry and Molecular Biology. 53(6):667-682. doi:10.1080/10409238.2018.1556578.
- 3. Williams NC, O'Neill LA. 2018. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Frontiers in Immunology. 9:141. doi:10.3389/fimmu.2018.00141.
- 4. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. 2020. The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology. 11:365. doi:10.3389/fendo.2020.00365.
- 5. Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. 2012. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radical Biology and Medicine. 53(3):421-436. doi:10.1016/j.freeradbiomed.2012.05.006.
- 6. Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B, Softic S. 2020. Tissue-specific fructose metabolism in obesity and diabetes. Current Diabetes Reports. 20(11):64. doi:10.1007/s11892-020-01342-8.

- 7. Sharma V, Ichikawa M, Freeze HH. 2014. Mannose metabolism: more than meets the eye. Biochemical and Biophysical Research Communications. 453(2):220-228. doi:10.1016/j.bbrc.2014.06.021.
- Liu G, Hale GE, Hughes CL. 2000. Galactose metabolism and ovarian toxicity. Reproductive Toxicology. 14(5):377-384. doi:10.1016/S0890-6238(00)00096-4.
- 9. de Carvalho CCCR, Caramujo MJ. 2018. The various roles of fatty acids. Molecules. 23(10):2583. doi:10.3390/molecules23102583.
- 10. Papackova Z, Cahova M. 2015. Fatty acid signalling: the new function of intracellular lipases. International Journal of Molecular Sciences. 16(2):3831-3855. doi:10.3390/ijms16023831.
- 11. Jump DB. 2009. Mammalian fatty acid elongases. Methods in Molecular Biology. 579:375-389. doi:10.1007/978-1-60761-322-0_19.
- 12. Farazi TA, Waksman G, Gordon JI. 2001. The biology and enzymology of protein N-myristoylation. Journal of Biological Chemistry. 276(43):39501-39504. doi: 10.1074/jbc.R100042200.
- Zhang L, Keung W, Samokhvalov V, Wang W, Lopaschuk GD. 2010. Role of fatty acid μtake and fatty acid β-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids. 1801(1):1-22. doi:10.1016/j.bbalip.2009.09.014.
- 14. Newman JC, Verdin E. 2014. Ketone bodies as signaling metabolites. Trends in Endocrinology and Metabolism. 25(1):42-52. doi:10.1016/j.tem.2013.09.002.
- Mazurek S, Garroum I, Daraspe J, Bellis DD, Olsson V, Mucciolo A, Butenko MA, Humbel BM, Nawrath C. 2017. Connecting the molecular structure of cutin to ultrastructure and physical properties of the cuticle in petals of *Arabidopsis*. Plant Physiology. 173(2):1146-1163. doi:10.1104/pp.16.01637.
- 16. Graça J. 2015. Suberin: the biopolyester at the frontier of plants. Frontiers in Chemistry. 3:62. doi:10.3389/fchem.2015.00062.
- 17. Patel S, Nelson DR, Gibbs AG. 2001. Chemical and physical analyses of wax ester properties. Journal of Insect Science. 1:4. doi:10.1673/031.001.0401.
- 18. Yang S, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. 2016. The role of cholesterol in membrane fusion. Chemistry and Physics of Lipids. 199:136-143. doi:10.1016/j.chemphyslip.2016.05.003.
- 19. Li S, Zheng H, Lin L, Wang F, Sui N. 2021. Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Regulation. 93(1):29-38. doi:10.1007/s10725-020-00672-7.
- 20. Vaz FM, Ferdinandusse S. 2017. Bile acid analysis in human disorders of bile acid biosynthesis. Molecular Aspects of Medicine. 56:10-24. doi:10.1016/j.mam.2017.03.003.
- Yamaguchi M, Uchiyama S, Tsukamoto Y. 2003. Inhibitory effect of menaquinone-7 (vitamin K₂) on the bone-resorbing factors-induced bone resorption in elderly female rat femoral tissues in vitro. Molecular and Cellular Biochemistry. 245:115-120. doi:10.1023/a:1022818111655.
- 22. Holst JP, Soldin OP, Guo T, Soldin SJ. 2004. Steroid hormones: relevance and measurement in the clinical laboratory. Clinics in Laboratory Medicine. 24(1):105-118. doi:10.1016/j.cll.2004.01.004.
- 23. Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. 2018. Potential mechanisms connecting purine metabolism and cancer therapy. Frontiers in Immunology. 9:1697. doi:10.3389/fimmu.2018.01697.
- Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, Artati A, Eap CB, Ehret G, Friedrich N, et al. 2016. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Human Molecular Genetics. 25(24):5472-5482. doi:10.1093/hmg/ddw334.
- Barcelos RP, Lima FD, Carvalho NR, Bresciani G, Royes LF. 2020. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutrition Research. 80:1-17. doi:10.1016/j.nutres.2020.05.005.
- Löffler M, Fairbanks LD, Zameitat E, Marinaki AM, Simmonds HA. 2005. Pyrimidine pathways in health and disease. Trends in Molecular Medicine. 11(9):430-437. doi:10.1016/j.molmed.2005.07.003.
- 27. Rodriguez PC, Ochoa AC, Al-Khami AA. 2017. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Frontiers in Immunology. 8:93. doi:10.3389/fimmu.2017.00093.
- 28. Felig P. 1973. The glucose-alanine cycle. Metabolism. 22(2):179-207. doi:10.1016/0026-0495(73)90269-2.
- Alkan HF, Walter KE, Luengo A, Madreiter-Sokolowski CT, Stryeck S, Lau AN, Al-Zoughbi WA, Lewis CA, Thomas CJ, Hoefler G, et al. 2018. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metabolism. 28(5):706-720. doi:10.1016/j.cmet.2018.07.021.
- Walker MC, Donk WA. 2015. The many roles of glutamate in metabolism. Journal of Industrial Microbiology and Biotechnology. 43:419-430. doi:10.1007/s10295-015-1665-y.
- 31. Razak MA, Begum PS, Viswanath B, Rajagopal S. 2017. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxidative Medicine and Cellular Longevity. 2017:1716701. doi:10.1155/2017/1716701.
- 32. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. 2013. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 45:463-477. doi:10.1007/s00726-013-1493-1.
- 33. Affronti HC, Rowsam AM, Pellerite AJ, Rosario SR, Long MD, Jacobi JJ, Bianchi-Smiraglia A, Boerlin CS, Gillard BM, Karasik E, et al. 2020. Pharmacological polyamine catabolism upregulation with methionine salvage pathway inhibition as an effective prostate cancer therapy. Nature Communications. 11:52. doi:10.1038/s41467-019-13950-4.
- 34. Sanderson SM, Gao X, Dai Z, Locasale JW. 2019. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nature Reviews Cancer. 19:625-637. doi:10.1038/s41568-019-0187-8.
- 35. Serpa J. 2020. Cysteine as a carbon source, a hot spot in cancer cells survival. Frontiers in Oncology. 10:947. doi:10.3389/fonc.2020.00947.
- 36. Zhang S, Zeng X, Ten M, Mao X, Qiao S. 2017. Novel metabolic and physiological functions of branched chain amino acids: a review. Journal of Animal Science and Biotechnology. 8:10. doi:10.1186/s40104-016-0139-z.
- 37. Holeček M. 2018. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutrition and Metabolism. 15:33. doi:10.1186/s12986-018-0271-1.
- Xu H, Andi B, Qian J, West AH, Cook PF. 2006. The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochemistry and Biophysics. 46(1):43-64. doi:10.1385/CBB:46:1:43.

- Ziolo MT, Kohr MJ, Wang H. 2008. Nitric oxide signaling and the regulation of myocardial function. Journal of Molecular and Cellular Cardiology. 45(5):625-632. doi:10.1016/j.yjmcc.2008.07.015.
- 40. Gogoi M, Datey A, Wilson KT, Chakravortty D. 2016. Dual role of arginine metabolism in establishing pathogenesis. Current Opinion in Microbiology. 29:43-48. doi:10.1016/j.mib.2015.10.005.
- 41. Paddon-Jones D, Børsheim E, Wolfe RR. 2004. Potential ergogenic effects of arginine and creatine supplementation. The Journal of Nutrition. 134(10):2888-2894. doi:10.1093/jn/134.10.2888s.
- 42. Tanner JJ, Fendt S, Becker DF. 2019. The proline cycle as a potential cancer therapy target. Biochemistry. 57(25):3433-3444. doi:10.1021/acs.biochem.8b00215.
- 43. Holeček M. 2020. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients. 12(3):848. doi:10.3390/nu12030848.
- 44. Mendelson SD. 2008. 10 Nutritional supplements and metabolic syndrome. In: Mendelson SD, editor. Metabolic Syndrome and Psychiatric Illness. Cambridge (MA): Academic Press. p. 141-186. doi:10.1016/B978-012374240-7.50012-7.
- 45. Brosnan ME, Brosnan JT. 2020. Histidine metabolism and function. The Journal of Nutrition. 150(1):2570s-2575s. doi:10.1093/jn/nxaa079.
- 46. Schenck CA, Maeda HA. 2018. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry. 149:82-102. doi:10.1016/j.phytochem.2018.02.003.
- 47. Turunen M, Olsson J, Dallner G. 2004. Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta (BBA) Biomembranes. 1660(1-2):171-199. doi:10.1016/j.bbamem.2003.11.012.
- 48. Tohge T, Watanabe M, Hoefgen R, Fernie AR. 2013. Shikimate and phenylalanine biosynthesis in the green lineage. Frontiers in Plant Science. 4:62. doi:10.3389/fpls.2013.00062.
- 49. Jonnakuty C, Gragnoli C. 2008. What do we know about serotonin? Journal of Cellular Physiology. 217(2):301-306. doi:10.1002/jcp.21533.
- Pandi-Perumal SR, Srinivasan V, Maestroni GJM, Cardinali DP, Poeggeler B, Hardeland R. 2006. Melatonin: nature's most versatile biological signal? The Febs Journal. 273(13):2813-2838. doi:10.1111/j.1742-4658.2006.05322.x.
- Kadriu B, Ballard ED, Henter ID, Murata S, Gerlus N, Zarate CA. 2020. Chapter seven neurobiological biomarkers of response to ketamine. In: Duman RS, Krystal JH, editors. Advances in Pharmacology. Volume 89. Cambridge (MA): Academic Press. p. 195-235. doi:10.1016/bs.apha.2020.05.003.
- Parthasarathy A, Cross PJ, Dobson RCJ, Adams LE, Savka MA, Hudson AO. 2018. A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role on the health of plants and animals. Frontiers in Molecular Biosciences. 5:29. doi:10.3389/fmolb.2018.00029.
- Parthasarathy A, Savka MA, Hudson AO. 2019. The synthesis and role of β-alanine in plants. Frontiers in Plant Science. 10:921. doi:10.3389/fpls.2019.00921.
- 54. Jong CJ, Azuma J, Schaffer S. 2012. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 42(6):2223-22232. doi:10.1007/s00726-011-0962-7.
- 55. Ariyoshi M, Katane M, Hamase K, Miyoshi Y, Nakane M, Hoshino A, Yoshifumi O, Mita Y, Kaimoto S, Uchihashi M. 2017. D-Glutamate is metabolized in the heart mitochondria. Scientific Reports. 7:43911. doi:10.1038/srep43911.
- Aliashkevich A, Alvarez L, Cava F. 2018. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Frontiers in Microbiology. 9:683. doi:10.3389/fmicb.2018.00683.
- 57. Kiriyama Y, Nochi H. 2016. D-Amino acids in the nervous and endocrine systems. Scientifica. 2016:6494621. doi:10.1155/2016/6494621.
- 58. Polo MP, De Bravo MG. 2006. Effect of geraniol on fatty-acid and mevalonate metabolism in the human hepatoma cell line Hep G2. Biochemistry and Cell Biology. 84(1):102-111. doi:10.1139/o05-160.
- 59. Babukumar S, Vinothkumar V, Sankaranarayanan C, Srinivasan S. 2017. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharmaceutical Biology. 55(1):1442-1449. doi:10.1080/13880209.2017.1301494.
- 60. Sykes RB, Bonner DP. 1985. Discovery and development of the monobactams. Reviews of Infectious Diseases. 7(4):S579-593. doi:10.1093/clinids/7.supplement_4.s579.
- 61. Li R, Oliver RA, Townsend CA. 2017. Identification and characterization of the sulfazecin monobactam biosynthetic gene cluster. Cell Chemical Biology. 24(1):24-34. doi:10.1016/j.chembiol.2016.11.010.
- 62. Coulthurst SJ, Barnard AML, Salmond GPC. 2005. Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nature Reviews Microbiology. 3:295-306. doi:10.1038/nrmicro1128.
- 63. Skryhan K, Gurrieri L, Sparla F, Trost P, Blennow A. 2018. Redox regulation of starch metabolism. Frontiers in Plant Science. 9:1344. doi:10.3389/fpls.2018.01344.
- 64. Lemoine R. 2000. Sucrose transporters in plants: update on function and structure. Biochimica et Biophysica Acta (BBA) Biomembranes. 1465(1-2):246-262. doi:10.1016/S0005-2736(00)00142-5.
- 65. Mikkola S. 2020. Nucleotide sugars in chemistry and biology. Molecules. 25(23):5755. doi:10.3390/molecules25235755.
- 66. Skarbek K, Milewska MJ. 2016. Biosynthetic and synthetic access to amino sugars. Carbohydrate Research. 434:44-71. doi:10.1016/j.carres.2016.08.005.
- 67. Farooqi AA, Horrocks LA, Farooqui T. 2007. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. Journal of Neuroscience Research. 85(9):1834-1850. doi:10.1002/jnr.21268.
- 68. Croze ML, Soulage CO. 2013. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 95(10):1811-1827. doi:10.1016/j.biochi.2013.05.011.
- Turman MV, Marnett LJ. 2010. 1.03 Prostaglandin endoperoxide synthases: structure, function, and synthesis of novel lipid signaling molecules. In: Liu H, Mander L, editors. Comprehensive Natural Products II. Amsterdam (NL): Elsevier. doi:10.1016/B978-008045382-8.00028-9.
- Duroudier NP, Tulah AS, Sayers I. 2009. Leukotriene pathway genetics and pharmacogenetics in allergy. Allergy. 64(6):823-839. doi:10.1111/j.1398-9995.2009.02015.x.

- 71. Chandrasekharan J, Sharma-Walia N. 2015. Lipoxins: nature's way to resolve inflammation. Journal of Inflammation Research. 8:181-192. doi:10.2147/JIR.S90380.
- Brownlee M, Aiello LP, Cooper ME, Vinik AI, Plutzky J, Boulton AJM. 2016. Chapter 33 complications of diabetes mellitus. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, editors. Williams Textbook of Endocrinology. 13th ed. Amsterdam (NL): Elsevier. p. 1484-1581. doi:10.1016/B978-0-323-29738-7.00033-2.
- 73. Whelan J. 2013. Advances in Nutrition. 4(3):311-312. doi:10.3945/an.113.003772.
- Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM. 1998. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell. 93(2):229-240. doi:10.1016/s0092-8674(00)81574-3.
- 75. Pirbalouti AG, Sajjadi SE, Parang K. 2014. A review (research and patents) on jasmonic acid and its derivatives. Archiv der Pharmazie. 347(4):229-239. doi:10.1002/ardp.201300287.
- 76. Gault CR, Obeid LM, Hannun YA. 2010. An overview of sphingolipid metabolism: from synthesis to breakdown. In: Chalfant C, Poeta MD, editors. Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology. 668:1-23. doi:10.1007/978-1-4419-6741-1_1.
- 77. Rao RP, Vaidyanathan N, Rengasamy M, Oommen A, Somaiya N, Jagannath MR. 2013. Sphingolipid metabolic pathway: an overview of major roles played in human diseases. Journal of Lipids. 2013:178910. doi:10.1155/2013/178910.
- 78. Ogretmen B. 2017. Sphingolipid metabolism in cancer signalling and therapy. Nature Reviews Cancer. 18:33-50. doi:10.1038/nrc.2017.96.